39 resultados para Insect baits and repellents.
Resumo:
The occurrence of the insect vector (sand flies) with low rates of Leishmania infection, as well as autochthonous transmission in the absence of the natural vector in dogs, have been reported. These unexpected data suggest a hypothesis of other arthropods as a possible way of Leishmania transmission. The prevalence of Leishmania (Leishmania) infantum in fleas and ticks collected from dogs with canine visceral leishmaniasis (CVL), as well as parasite viability, were evaluated herein. The presence of L. (L.) infantum was assayed by PCR and ELISA in ectoparasites and biological samples from 73 dogs living in a Brazilian endemic area. As the occurrence of Leishmania DNA in ticks and fleas is expected given their blood-feeding habits, we next investigated whether parasites can remain viable inside ticks. PCR and ELISA confirmed that 83% of the dogs had CVL. Fleas and ticks (nymphs, male and female adults) were collected in 55% and 63% of the 73 dogs, respectively. Out of the 60 dogs with CVL, 80% harbored ectoparasites infected with L. (L.) infantum. The infection rates of the ectoparasites were 23% and 50% for fleas and ticks, respectively. The RNA analysis of the extract from ticks left in laboratory conditions during 7 to 10 days after removal from CVL dogs showed that parasites were alive. In addition, live parasites were also detected inside adult ticks recently molted in laboratory conditions. These findings indicate a higher infection rate of L. (L.) infantum in ticks and fleas, but they do not conclusively demonstrate whether these ticks can act as vectors of CVL, despite the fact that their rates were higher than those previously described in Lutzomyia longipalpis. The presence of viable L. (L.) infantum in ticks suggests the possible importance of dog ectoparasites in CVL dissemination.
Resumo:
Methods used for lipid analysis in embryos and oocytes usually involve selective lipid extraction from a pool of many samples followed by chemical manipulation, separation and characterization of individual components by chromatographic techniques. Herein we report direct analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of single and intact embryos or oocytes from various species. Biological samples were simply moisturized with the matrix solution and characteristic lipid ( represented by phosphatidylcholines, sphingomyelins and triacylglycerols) profiles were obtained via MALDI-MS. As representative examples, human, bovine, sheep and fish oocytes, as well as bovine and insect embryos were analyzed. MALDI-MS is shown to be capable of providing characteristic lipid profiles of gametes and embryos and also to respond to modifications due to developmental stages and in vitro culture conditions of bovine embryos. Investigation in developmental biology of the biological roles of structural and reserve lipids in embryos and oocytes should therefore benefit from these rapid MALDI-MS profiles from single and intact species.-Ferreira, C. R., S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo, G. B. Sanvido, L. F. A. Santos, E. G. Lo Turco, J. H. F. Pontes, A. C. Basso, R. P. Bertolla, R. Sartori, M. M. Guardieiro, F. Perecin, F. V. Meirelles, J. R. Sangalli, and M. N. Eberlin. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 2010. 51: 1218-1227.
Resumo:
The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.
Resumo:
Social organization enables leaf-cutting ants to keep appropriate micro-ecological nest conditions for the fungus garden (their main food), eggs, larvae and adults. To maintain stability while facing changing conditions, individual ants must perceive destabilising factors and produce a proper behavioral response. We investigated behavioral responses to experimental dehydration in leaf-cutting ants to verify if task specialization exists, and to quantify the ability of ant sub-colonies for water management. Our setup consisted of fourteen sub-colonies, ten of which were randomly assigned to different levels of experimental dehydration with silica gel, whereas the remaining four were controls. The ten experimental sub-colonies were split into two groups, so that five of them had access to water. Diverse ant morphs searched for water in dehydrated colonies, but mainly a caste of small ants collected water after sources had been discovered. Size specialization for water collection was replicable in shorter experiments with three additional colonies. Ants of dehydrated colonies accumulated leaf-fragments on the nest entrance, and covering the fungus garden. Behaviors that may enhance humidity within the nests were common to all dehydration treatments. Water availability increased the life span of dehydrated colonies.
Resumo:
Brachycephalus hermogenesi is an endemic leaf litter inhabitant of the Atlantic forest of southeastern Brazil, whose original distribution included a restricted area near the boundaries of the States of Sao Paulo and Rio de Janeiro. We were surprised to find out, while conducting herpetofaunal surveys at Estacao Biologica de Boraceia (EBB), that the background forest insect-like sound we have been searching for corresponded to calling individuals of the species. Males call during the day at high densities, hidden under the leaf litter. Individuals do not answer playback, seem to move very infrequently, and seem to ignore nearby calling activity. We gathered data on annual and daily vocal activity of the species at EBB, observing a total of 1,549 calls given by 31 focal individuals in November 2003 and 2005. The call varies from short single note calls to calls composed of groups of two to seven similar notes emitted at regular intervals. We also extend the known distribution of the species southward to the State of Sao Paulo.
Resumo:
Orbiculariae consists of two major clades: the cribellate Deinopidea and the much more diverse ecribellate Araneoidea. It has been hypothesized that the higher diversity of Araneoidea is a consequence of the superiority of the viscid orb web. However, this explanation seems incomplete: for example, cribellate silk may perform better than viscid silk in some contexts. Here, we consider the hypothesis that the diversification of Araneoidea was facilitated by changes in microhabitat occupation behavior due to the cheaper viscid orb web. In the present work we investigate the idea that the reduction in site tenacity caused by the emergence of the viscid orb web has led to an increase in the exploration of different resources and to a greater diversification of the Arancoidea through the evolutionary time. To test this idea, we evaluated the response of one cribellate orb web spider (Zosis geniculata Olivier 1789, Uloboridae) and one ecribellate orb web spider (Metazygia rogenhoferi Keyserling 1878, Arancidae) to abrupt prey absence. The changes in site tenacity and the day-to-day investment in web silk were evaluated. Spiders with three-dimensional webs tend to exhibit greater site tenacity than spiders making orb webs. Zosis geniculata and M. rogenhoferi show similar site tenacity when prey is ample. When prey is unavailable, the tenacity of the cribellate species increases while the tenacity of the ecribellate remains unchanged, and the silk investment of both species decreases. However, this decrease in silk investment is more extensive in Z. geniculata. These results coincide with the idea that a less costly ecribellate orb web leads to a lower tenacity and suggest that more frequent microhabitat abandonment in a context of insect radiation (Neiptera) leads to more diverse and opportunistic exploration of microhabitats that, in the long term, may be one explanation for the greater Araneoidea diversification.
Resumo:
Little is known about insect intestinal sugar absorption, in spite of the recent findings, and even less has been published regarding water absorption. The aim of this study was to shed light on putative transporters of water and glucose in the insect midgut Glucose and water absorptions by the anterior ventriculus of Dysdercus peruvianus midgut were determined by feeding the insects with a glucose and a non-absorbable dye solution, followed by periodical dissection of insects and analysis of ventricular contents. Glucose absorption decreases glucose/dye ratios and water absorption increases dye concentrations. Water and glucose transports are activated (water 50%, glucose 33%) by 50 mM K(2)SO(4) and are inhibited (water 46%, glucose 82%) by 0.2 mM phloretin, the inhibitor of the facilitative hexose transporter (GLUT) or are inhibited (water 45%, glucose 35%) by 0.1 mM phlorizin, the inhibitor of the Na(+)-glucose cotransporter (SGLT). The results also showed that the putative SGLT transports about two times more water relative to glucose than the putative GLUT. These results mean that D. peruvianus uses a GLUT-like transporter and an SGLT-like transporter (with K(+) instead of Na(+)) to absorb dietary glucose and water. A cDNA library from D. peruvianus midgut was screened and we found one sequence homologous to GLUT1, named DpGLUT, and another to a sodium/solute symporter, named DpSGLT. Semi-quantitative RT-PCR studies revealed that DpGLUT and DpSGLTs mRNA were expressed in the anterior midgut, where glucose and water are absorbed, but not in fat body, salivary gland and Malpighian tubules. This is the first report showing the involvement of putative GLUT and SGLT in both water and glucose midgut absorption in insects. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
1. Analyses of species association have major implications for selecting indicators for freshwater biomonitoring and conservation, because they allow for the elimination of redundant information and focus on taxa that can be easily handled and identified. These analyses are particularly relevant in the debate about using speciose groups (such as the Chironomidae) as indicators in the tropics, because they require difficult and time-consuming analysis, and their responses to environmental gradients, including anthropogenic stressors, are poorly known. 2. Our objective was to show whether chironomid assemblages in Neotropical streams include clear associations of taxa and, if so, how well these associations could be explained by a set of models containing information from different spatial scales. For this, we formulated a priori models that allowed for the influence of local, landscape and spatial factors on chironomid taxon associations (CTA). These models represented biological hypotheses capable of explaining associations between chironomid taxa. For instance, CTA could be best explained by local variables (e.g. pH, conductivity and water temperature) or by processes acting at wider landscape scales (e.g. percentage of forest cover). 3. Biological data were taken from 61 streams in Southeastern Brazil, 47 of which were in well-preserved regions, and 14 of which drained areas severely affected by anthropogenic activities. We adopted a model selection procedure using Akaike`s information criterion to determine the most parsimonious models for explaining CTA. 4. Applying Kendall`s coefficient of concordance, seven genera (Tanytarsus/Caladomyia, Ablabesmyia, Parametriocnemus, Pentaneura, Nanocladius, Polypedilum and Rheotanytarsus) were identified as associated taxa. The best-supported model explained 42.6% of the total variance in the abundance of associated taxa. This model combined local and landscape environmental filters and spatial variables (which were derived from eigenfunction analysis). However, the model with local filters and spatial variables also had a good chance of being selected as the best model. 5. Standardised partial regression coefficients of local and landscape filters, including spatial variables, derived from model averaging allowed an estimation of which variables were best correlated with the abundance of associated taxa. In general, the abundance of the associated genera tended to be lower in streams characterised by a high percentage of forest cover (landscape scale), lower proportion of muddy substrata and high values of pH and conductivity (local scale). 6. Overall, our main result adds to the increasing number of studies that have indicated the importance of local and landscape variables, as well as the spatial relationships among sampling sites, for explaining aquatic insect community patterns in streams. Furthermore, our findings open new possibilities for the elimination of redundant data in the assessment of anthropogenic impacts on tropical streams.
Resumo:
When carrying out experiments on the production of the edible mushroom Pleurotus sajor-caju in the Laboratory of Edible Mushrooms, Universidade Federal de Lavras, Lavras, Brazil, in the second half of 2007, the presence of beetles later identified as belonging to the species Mycotretus apicalis was verified. This is the first recorded instance of this insect in cultures of P. sajor-caju in Brazil. The larvae and adults of this insect feed on the fruiting bodies of commercial harvests, resulting in reduction in mushroom quality. To provide evaluation of the injuries caused by these insects, substrates colonized by P. sajor-caju were infested with 4, 8, 16, 32 and 64 insects per block of substrate being the qualitative and quantitative losses then noted. Despite the lack of an observed decrease in biological efficiency, the injuries caused by these insects affected the commercial quality of the mushrooms, which may result in economic losses. The results showed that infestations of 32 insects per 0.8 kg of substrate led to a depreciation in the prices of mushrooms meant to be sold.
Resumo:
The moss Tayloria dubyi (Splachnaceae) is endemic to the subantarctic Magallanes ecoregion where it grows exclusively on bird dung and perhaps only on feces of the goose Chloephaga picta, a unique habitat among Splachnaceae. Some species of Splachnaceae from the Northern Hemisphere are known to recruit coprophilous flies as a vector to disperse their spores by releasing intense odors mimicking fresh clung or decaying corpses. The flies land on the capsule, and may get in contact with the protruding mass of spores that stick to the insect body. The dispersal strategy relies on the spores falling off when the insect reaches fresh droppings or carrion. Germination is thought to be rapid and a new population is quickly established over the entire substrate. The objectives of this investigation were to determine whether the coprophilous T. dubyi attracts flies and to assess the taxonomic diversity of the flies visiting this moss. For this, fly traps were set up above mature sporophyte bearing populations in two peatlands on Navarino Island. We captured 64 flies belonging to the Muscidae (Palpibracus chilensis), Tachinidae (Dasyuromyia sp) and Sarcophagidae (not identified to species) above sporophytes of T. dubyi, whereas no flies were captured in control traps set up above Sphagnum mats nearby.
Resumo:
We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia cuiicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Three plant proteinase inhibitors BbKI (kallikrein inhibitor) and BbCI (cruzipain inhibitor) from Bauhinia bouhinioides, and a BrTI (trypsin inhibitor) from B. rufa, were examined for other effects in Callosobruchus maculatus development; of these only BrTI affected bruchid emergence. BrTI and BbKI share 81% identities in their primary sequences and the major differences between them are the regions comprising the RGD and RGE motifs in BrTI. These sequences were shown to be essential for BrTI insecticidal activity, since a modified BbKI [that is a recombinant form (BbKIm) with some amino acid residues replaced by those found in BrTI sequence] also strongly inhibited insect development. By using synthetic peptides related to the BrTI sequence, YLEAPVARGDGGLA-NH(2) (RGE) and IVYYPDRGETGL-NH(2) (RGE), it was found that the peptide with an RGE sequence was able to block normal development of C. maculatus larvae (ED(50) 0.16% and LD(50) 0.09%), this being even more effective than the native protein. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The genome sequence of Aedes aegypti was recently reported. A significant amount of Expressed Sequence Tags (ESTs) were sequenced to aid in the gene prediction process. In the present work we describe an integrated analysis of the genomic and EST data, focusing on genes with preferential expression in larvae (LG), adults (AG) and in both stages (SG). A total of 913 genes (5.4% of the transcript complement) are LG, including ion transporters and cuticle proteins that are important for ion homeostasis and defense. From a starting set of 245 genes encoding the trypsin domain, we identified 66 putative LG, AG, and SG trypsins by manual curation. Phylogenetic analyses showed that AG trypsins are divergent from their larval counterparts (LG), grouping with blood-induced trypsins from Anopheles gambiae and Simulium vittatum. These results support the hypothesis that blood-feeding arose only once, in the ancestral Culicomorpha. Peritrophins are proteins that interlock chitin fibrils to form the peritrophic membrane (PM) that compartmentalizes the food in the midgut. These proteins are recognized by having chitin-binding domains with 6 conserved Cys and may also present mucin-like domains (regions expected to be highly O-glycosylated). PM may be formed by a ring of cells (type 2, seen in Ae. aegypti larvae and Drosophila melanogaster) or by most midgut cells (type 1, found in Ae. aegypti adult and Tribolium castaneum). LG and D. melanogaster peritrophins have more complex domain structures than AG and T. castaneum peritrophins. Furthermore, mucin-like domains of peritrophins from T. castaneum (feeding on rough food) are lengthier than those of adult Ae. aegypti (blood-feeding). This suggests, for the first time, that type 1 and type 2 PM may have variable molecular architectures determined by different peritrophins and/or ancillary proteins, which may be partly modulated by diet.
Resumo:
The pentrophic membrane (PM) is an anatomical structure surrounding the food bolus in most insects. Rejecting the idea that PM has evolved from coating mucus to play the same protective role as it, novel functions were proposed and experimentally tested. The theoretical principles underlying the digestive enzyme recycling mechanism were described and used to develop an algorithm to calculate enzyme distributions along the midgut and to infer secretory and absorptive sites. The activity of a Spodoptera frugiperda microvillar aminopeptidase decreases by 50% if placed in the presence of midgut contents. S. frugiperda trypsin preparations placed into dialysis bags in stirred and unstirred media have activities of 210 and 160%, respectively, over the activities of samples in a test tube. The ectoperitrophic fluid (EF) present in the midgut caeca of Rhynchosciara americana may be collected. If the enzymes restricted to this fluid are assayed in the presence of PM contents (PMC) their activities decrease by at least 58%. The lack of PM caused by calcofluor feeding impairs growth due to an increase in the metabolic cost associated with the conversion of food into body mass. This probably results from an increase in digestive enzyme excretion and useless homeostatic attempt to reestablish destroyed midgut gradients. The experimental models support the view that PM enhances digestive efficiency by: (a) prevention of non-specific binding of undigested material onto cell Surface; (b) prevention of excretion by allowing enzyme recycling powered by an ectoperitrophic counterflux of fluid; (c) removal from inside PM of the oligomeric molecules that may inhibit the enzymes involved in initial digestion; (d) restriction of oligomer hydrolases to ectoperitrophic space (ECS) to avoid probable partial inhibition by non-dispersed undigested food. Finally,PM functions are discussed regarding insects feeding on any diet. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sugarcane is an important crop that has recently become subject to attacks from the weevil Sphenophorus levis, which is not efficiently controlled with chemical insecticides. This demands the development of new control devices for which digestive physiology data are needed. In the present study, ion-exchange chromatography of S. levis whole midgut homogenates, together with enzyme assays with natural and synthetic substrates and specific inhibitors, demonstrated that a cysteine proteinase is a major proteinase, trypsin is a minor one and chymotrypsin is probably negligible. Amylase, maltase and the cysteine proteinase occur in the gut contents and decrease throughout the midgut; trypsin is constant in the entire midgut, whereas a membrane-bound aminopeptidase predominates in the posterior midgut. The cysteine proteinase was purified to homogeneity through ion-exchange chromatography. The purified enzyme had a mass of 37 kDa and was able to hydrolyze Z-Phe-Arg-MCA and Z-Leu-Arg-MCA with k(cat)/K(m) values of 20.0 +/- 1.1 mu M(-1) s(-1) and 30.0 +/- 0.5 mu M(-1) s(-1), respectively, but not Z-Arg-Arg-MCA. The combined results suggest that protein digestion starts in the anterior midgut under the action of a cathepsin L-like proteinase and ends on the surface of posterior midgut cells. All starch digestion takes place in anterior midgut. These data will be instrumental to developing S. levis-resistant sugarcane. (C) 2011 Elsevier Ltd. All rights reserved.