43 resultados para Heihe river watershed
Resumo:
The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k(0) method (k(0)-INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Fig, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k(0)-INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Examination of the mechanisms involved in the construction of present-day vegetative deposits along coastal waterways has made it possible to establish depositional patterns that can be compared with those found in similar environments in geologic time. These patterns include not only the composition and transport of the debris but also an estimation of the time involved in its deposition. Six sites with active deposits of plant macrodebris in the coastal basin of the Itanhaem River, Sao Paulo State, Brazil, were used in the study. In the central portion of the basin, the interior coastal plain is covered with restinga forest (dense, wet tropical forest of low altitudes), while the lower portion consists of mangrove swamps. The coast reflects anthropogenic intervention, and only a few scattered remnants of precolonization dune vegetation remain. The results after three years of study suggest that the accumulation of plant macrodebris in the middle and lower portions of the basin is parautochthonous, since only the leaves of genera typical of the restinga forest and mangrove swamp, respectively, were found. Along the coast the accumulations involved a mixture of parautochthonous and allochthonous elements. On the levee of the Branco River and within the mangrove swamp, deposition was slow, and many of the elements decayed quickly; such accumulations show little potential for preservation and eventual fossilization. A different site, however, reveals the rapid deposition of thick layers of plant debris, presumably associated with storms, and these accumulations are preserved for long periods, constituting good candidates for possible fossilization.
Resumo:
In the current work a Green Analytical Chemistry (GAC) procedure for photometric determination of orthophosphate in river water at mu g L-1 concentration level is described. The flow system module and the LED-based photometer were assembled together to constitute a compact unit in order to allow that a flow cell with optical path-length of 100mm was coupled to them. The photometric procedure based on the molybdenum blue method was implemented employing the multicommuted flow injection analysis approach, which provided facilities to allow reduction of reagent consumption and as well as waste generation. Aiming to prove the usefulness of the system, orthophosphate in river and tap waters was determined. Accuracy was ascertained by spiking samples with orthophosphate solution yielding recoveries ranging from 96% up to 107%. Other profitable features such as a wide linear response range between 10 to 800 mu g L-1 [image omitted]; a detection limit (3 sigma criterion) of 2.4 mu g L-1 [image omitted]; a relative standard deviation (n=7) of 2% using a typical water sample with concentration of 120 mu g L-1 [image omitted]; reagent consumption of 3.0mg ammonium molybdate, 0.3mg hydrazine sulfate, and 0.03mg stannous chloride per determination; a waste generation of 2.4mL per determination; and a sampling throughput of 20 determination per hours were also achieved.
Resumo:
An analysis of geomorphic system`s response to change in human and natural drivers in some areas within the Rio de la Plata basin is presented The aim is to determine whether an acceleration of geomorphic processes has taken place in recent years and, if so, to what extent it is due to natural (climate) or human (land-use) drivers Study areas of different size, socio-economic and geomorphic conditions have been selected: the Rio de la Plata estuary and three sub-basins within its watershed Sediment cores were extracted and dated ((210)Pb) to determine sedimentation rates since the end of the 19th century. Rates were compared with time series on rainfall as well as human drivers such as population, GDP, livestock load, crop area, energy consumption or cement consumption, all of them related to human capacity to disturb land surface Data on river discharge were also gathered Results obtained indicate that sedimentation rates during the last century have remained essentially constant in a remote Andean basin, whereas they show important increases in the other two, particularly one located by the Sao Paulo metropolitan area Rates in the estuary are somewhere in between It appears that there is an intensification of denudation/sedimentation processes within the basin. Rainfall remained stable or varied very slightly during the period analysed and does not seem to explain increases of sedimentation rates observed. Human drivers, particularly those more directly related to capacity to disturb land surface (GDP, energy or cement consumption) show variations that suggest human forcing is a more likely explanation for the observed change in geomorphic processes It appears that a marked increase in denudation, of a ""technological"" nature, is taking place in this basin and leading to an acceleration of sediment supply This is coherent with similar increases observed in other regions (C) 2010 Elsevier B V All rights reserved
Resumo:
This study aimed at evaluating biomarkers, individual and population responses in the native Chironomus xanthus to assess the toxicity of pesticide-contaminated sediments from the Monjolinho River (Southeast Brazil). We measured cholinesterase (ChE) and glutathione S-transferase activities (GST), as biomarkers and survival, individual growth and adult emergence, as individual performances. There was no response of the ChE activity and a tendency to decreased GST activity in contaminated sites, but this was generally not statistically significant. Therefore, there was no association of the biomarker responses with exposure to sediment containing pesticides. In contrast, ash free dry mass was significantly increased and male emergence was decreased in C. xanthus exposed to the same sediments. In conclusion, the selected biomarkers were not sensitive and specific enough to detect and anticipate effects of pesticide contamination at the levels measured in the study area. Nevertheless, individual performances alterations pointed to potential pollution problems and possible ecological consequences. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The introduction of allochthonous fish species happens constantly in large bodies of freshwater, like as the reservoirs of Parana Basin, located in Brazilian southeast, representing a threat for local biodiversity. The fish species Plagioscion squamosissimus and Cichla ocellaris were introduced from the 1970s in several water bodies of this basin and had successfully established themselves in all six reservoirs located in the middle and lower Tiete River (SP, Brazil), particularly. After six decades from the first recorded species introduction, this hydrographic system remains open to the invasion of further fish species, owing to widespread fish-farming activity and by the channels opened between this system and other reservoirs and river basin. This study was an effort to confirm the Geophagus proximus occurrence in the six Tiete River reservoirs, verifying the actual introduction status and analyzing its potential environmental impacts on local species by the analysis of the population structure (abundance, body dimensions and feeding habits). By the results, this species was confirmed in the Ibitinga, Nova Avanhandava and Tres Irmaos reservoirs. The abundance and feeding analysis shows, respectively, it is successfully established in the Tres Irmaos reservoir with the same feeding habitats of local species, such as Geophagus brasiliensis. It was further shown to be very likely that G. proximus would spread throughout the reservoir system of the middle and lower Tiete River, in the manner of P. squamosissimus and C. ocellaris, and the competition pressure for food resources between G. proximus and the local species which represents a potential environmental impact system. These scientific evidences fortifies the knowledge basin for the implantation of a fish management system, to control and reduce the abundance of the invader and to prevent its becoming established in all the Tiete River Basin, avoiding the disastrous consequences for the native species of Parana River Basin.
Resumo:
The oxidative stress biomarkers of exposure, such as reduced glutathione (GSH), activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and the levels of lipid peroxidation (LPO), were measured in the blood of three cichlid fish (Oreochromis niloticus, Tilapia rendalli, and Geophagus brasiliensis) taken during two seasons from two sites, unpolluted and polluted by industrial effluents, to evaluate the effectiveness of these biomarkers in assessing the impact of water contamination. The LPO levels in the blood were higher in fish from the metal-contaminated site and the chronic exposure led to significant changes in GPx, CAT, and SOD activities in all three cichlid species. The considerable variation of responses in these cichlids to water contamination evidenced differences in sensitivity to the metal contamination and/or in the potential to respond to it highlighting the importance of using a set of related biomarkers to assess the impact of water contamination. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Rotifera density, biomass, and secondary production on two marginal lakes of Paranapanema River were compared after the recovery of hydrologic connectivity with the river (Sao Paulo State, Brazil). Daily samplings were performed in limnetic zone of both lakes during the rainy season immediately after lateral inflow of water and, in the dry period, six months after hydrologic connectivity recovery. In order to identify the factors that affect rotifer population dynamics, lake water level, volume, depth, temperature, transparency, dissolved oxygen, pH, alkalinity, conductivity, suspended solids, nutrients, and chlorophyll-a were determined. Variations of water physical and chemical factors that affect rotifer population were related to the lake-river degree of connection and to water level rising after drought. The water lateral inflow from the river resulted in an increase in lake water volume, depth, and transparency and a decrease in water pH, alkalinity, and suspended solids. The lake with the wider river connection, more frequent biota exchange, and larger amount of particulate and dissolved materials was richer and more diverse, while rotifer density, biomass, and productivity were lower in both periods studied. Density, biomass, and secondary production were higher in the lake with the smaller river connection and the higher physical and chemical stability. Our results show that the connectivity affects the limnological stability, associated to seasonality. Stable conditions, caused by low connectivity in dry periods, were related with high density, biomass and secondary production. Conversely, instability conditions in rainy periods were associated to elevated richness and diversity values, caused by exchange biota due to higher connectivity. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Aquatic humic substances (AHS) isolated from two characteristic seasons of the Negro river, winter and summer corresponding to floody and dry periods, were structurally characterized by (13)C nuclear magnetic ressonance. Subsequently, AHS aqueous solutions were irradiated with a polychromatic lamp (290-475 nm) and monitored by its total organic carbon (TOC) content, ultraviolet-visible (UV-vis) absorbance, fluorescence and Fourier transformed infrared spectroscopy (FTIR). As a result, a photobleaching upto 80% after irradiation of 48 h was observed. Conformational rearrangements and formation of low molecular complexity structures were formed during the irradiation, as deduced from the pH decrement and the fluorescence shifting to lower wavelengths. Additionally a significant mineralization with the formation Of CO(2), CO, and inorganic carbon compounds was registered, as assumed by TOC losses of up to 70%. The differences in photodegradation between samples expressed by photobleaching efficiency were enhanced in the summer sample and related to its elevated aromatic content. Aromatic structures are assumed to have high autosensitization capacity effects mediated by the free radical generation from quinone and phenolic moieties.
Resumo:
The recognition of temporally stable locations with respect to soil water content is of importance for soil water management decisions, especially in sloping land of watersheds. Neutron probe soil water content (0 to 0.8 m), evaluated at 20 dates during a year in the Loess Plateau of China, in a 20 ha watershed dominated by Ust-Sandiic Entisols and Aeolian sandy soils, were used to define their temporal stability through two indices: the standard deviation of relative difference (SDRD) and the mean absolute bias error (MABE). Specific concerns were (a) the relationship of temporal stability with soil depth, (b) the effects of soil texture and land use on temporal stability, and (c) the spatial pattern of the temporal stability. Results showed that temporal stability of soil water content at 0.2 m was significantly weaker than those at the soil depths of 0.6 and 0.8 m. Soil texture can significantly (P<0.05) affect the stability of soil water content except for the existence of an insignificant difference between sandy loam and silt loam textures, while temporal stability of areas covered by bunge needlegrass land was not significantly different from those covered by korshinsk peashrub. Geostatistical analysis showed that the temporal stability was spatially variable in an organized way as inferred by the degree of spatial dependence index. With increasing soil depth, the range of both temporal stability indices showed an increasing trend, being 65.8-120.5 m for SDRD and 148.8-214.1 m for MABE, respectively. This study provides a valuable support for soil water content measurements for soil water management and hydrological applications on sloping land areas. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The knowledge of soil water storage (SWS) of soil profiles is crucial for the adoption of vegetation restoration practices. With the aim of identifying representative sites to obtain the mean SWS of a watershed, a time stability analysis of neutron probe evaluations of SWS was performed by the means of relative differences and Spearman rank correlation coefficients. At the same time, the effects of different neutron probe calibration procedures were explored on time stability analysis. mean SWS estimation. and preservation of the spatial variability of SWS. The selected watershed, with deep gullies and undulating slopes which cover an area of 20 ha, is characterized by an Ust-Sandiic Entisol and an Aeolian sandy soil. The dominant vegetation species are bunge needlegrass (Stipa bungeana Trim) and korshinsk peashrub (Carugano Korshinskii kom.). From June 11, 2007 to July 23,2008, SWS of the top1 m soil layer was evaluated for 20 dates, based on neutron probe data of 12 sampling sites. Three calibration procedures were employed: type 1, most complete, with each site having its own linear calibration equation (TrE); type II. with TrE equations extended over the whole field: and type III, with one single linear calibration curve for the whole field (UnE) and also correcting its intercept based on site specific relative difference analysis (RdE) and on linear fitting of data (RcE), both maintaining the same slope. A strong time stability of SWS estimated by TrE equations was identified. Soil particle size and soil organic matter content were recognized as the influencing factors for spatial variability of SWS. Land use influenced neither the spatial variability nor the time stability of SWS. Time stability analysis identified one site to represent the mean SWS of the whole watershed with mean absolute percentage errors of less than 10%, therefore. this site can be used as a predictor for the mean SWS of the watershed. Some equations of type II were found to be unsatisfactory to yield reliable mean SWS values or in preserving the associated soil spatial variability. Hence, it is recommended to be cautious in extending calibration equations to other sites since they might not consider the field variability. For the equations with corrected intercept (type III), which consider the spatial variability of calibration in a different way in relation to TrE, it was found that they can yield satisfactory means and standard deviation of SWS, except for the RdE equations, which largely leveled off the SWS values in the watershed. Correlation analysis showed that the neutron probe calibration was linked to soil bulk density and to organic matter content. Therefore, spatial variability of soil properties should be taken into account during the process of neutron probe calibration. This study provides useful information on the mean SWS observation with a time stable site and on distinct neutron probe calibration procedures, and it should be extended to soil water management studies with neutron probes, e.g., the process of vegetation restoration in wider area and soil types of the Loess Plateau in China. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In Rondonia State, Brazil, settlement processes have cleared 68,000 km 2 of tropical forests since the 1970s. The intensity of deforestation has differed by region depending on driving factors like roads and economic activities. Different histories of land-use activities and rates of change have resulted in mosaics of forest patches embedded in an agricultural matrix. Yet, most assessments of deforestation and its effects on vegetation, soil and water typically focus on landscape patterns of current conditions, yet historical deforestation dynamics can influence current conditions strongly. Here, we develop and describe the use of four land-use dynamic indicators to capture historical land-use changes of catchments and to measure the rate of deforestation (annual deforestation rate), forest regeneration level (secondary forest mean proportion), time since disturbance (mean time since deforestation) and deforestation profile (deforestation profile curvature). We used the proposed indices to analyze a watershed located in central Rondonia. Landsat TM and ETM+ images were used to produce historical land-use maps of the last 18 years, each even year from 1984 to 2002 for 20 catchments. We found that the land-use dynamics indicators are able to distinguish catchments with different land-use change profiles. Four categories of historical land-use were identified: old and dominant pasture cover on small properties, recent deforestation and dominance of secondary growth, old extensive pastures and large forest remnants and, recent deforestation, pasture and large forest remnants. Knowing historical deforestation processes is important to develop appropriate conservation strategies and define priorities and actions for conserving forests currently under deforestation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A dynamic systems simulation model of water resources was developed as a tool to help analyze alternatives to water resources management for the Piracicaba, Capivari and Jundiai River Water Basins (RB-PCJ), and used to run six 50-year simulations from 2004 to 2054. The model estimates water supply and demand, as well as contamination load by several consumers. Six runs were performed using a constant mean precipitation value, changing water supply and demand and different volumes diverted from RB-PCJ to RB-Alto Tiet. For the Business as Usual scenario, the Sustainability Index went from 0.44 in 2004 to 0.20 by 2054. The Water Sustainability Index changed from 74% in 2004 to 131% by 2054. The Falkenmark Index changed from 1,403 m(3) person (-aEuro parts per thousand 1) year (-aEuro parts per thousand 1) in 2004 to 734 m(3) person (-aEuro parts per thousand 1) year (-aEuro parts per thousand 1) by 2054. We concluded that sanitation is one of the major problems for the PCJ River Basins.
Resumo:
A total of 202 fish, representing 16 species, were collected during 2008 (March-October) in the Tanquan region of the Piracicaba River using nets. Flesh samples were collected and analyzed, using inductively coupled plasma-optical emission spectroscopy for Al, As, Cd, Co Cr, Cu, Mn, Mo, Ni, Ph, Se, Sn, Sr, and Zn. The results showed that the flesh of these fish all contained extremely high levels of Al and Sr, and moderately high levels of Cr, As, Zn, Ni. Mn and Pb. The metals were higher in these fish during rainy season, with fish collected during the months of March and October being the highest. In addition, the accumulation of metals was species-dependent. Cascudos (Hypostomus punctatus) and piranhas (Serrasalmus spilopleura) exhibited high levels of almost all of the metals, while curimbata (Prochilodus lineatus) had moderate levels. A few species, including pacu (Piaractus mesopotamicus) and dourado (Salminus maxillosus), had very low levels of most metals. The results show that the Piracicaba River Basin is widely contaminated with high levels of many toxic heavy metals, and that human consumption of some fish species is a human health concern. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sao Paulo state, Brazil, is one of the main areas of sugar cane agriculture in the world. Herbicides, in particular, ametryn, are extensively used in this extensive area, which implies that this herbicide is present in the environment and can contaminate the surface water by running off. Thereby, residues of ametryn were analyzed in samples of river water an river sediment and in freshwater bivalves obtained from the rivers Sapucai, Pardo and Mogi-Guacu in Sao Paulo State, Brazil. Samples were taken in the winter of 2003 and 2004 in two locations in each river. The specimens of freshwater bivalves collected and analyzed were Corbicula fluminea, an exotic species, and Diplodon fontaineanus, a native species. Additionally, the evaluation of the ability of bioconcentration and depuration of ametryn by the freshwater bivalve Corbicula fluminea was also performed. Ametryn concentrations in the samples were measured by liquid chromatography coupled to mass spectrometry. Residues of ametryn in water (50 ng/L) and in freshwater bivalves (2-7 ng/g) were found in the Mogi-Guacu River in 2004, and residues in river sediments were found in all rivers in 2003 and 2004 (0.5-2 ng/g). The observation of the aquatic environment through the analysis of these matrixes, water, sediment, and bivalves, revealed the importance of the river sediment in the accumulation of the herbicide ametryn, which can contaminate the biota.