58 resultados para HISTIDINE TRIAD NUCLEOTIDE-BINDING PROTEIN-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Duffy binding protein of Plasmodium vivax (DBP) is a critical adhesion ligand that participates in merozoite invasion of human Duffy-positive erythrocytes. A small outbreak of P. vivax malaria, in a village located in a non-malarious area of Brazil, offered us an opportunity to investigate the DBP immune responses among individuals who had their first and brief exposure to malaria. Thirty-three individuals participated in the five cross-sectional surveys, 15 with confirmed P. vivax infection while residing in the outbreak area (cases) and 18 who had not experienced malaria (non-cases). In the present study, we found that only 20% (three of 15) of the individuals who experienced their first P. vivax infection developed an antibody response to DBP; a secondary boosting can be achieved with a recurrent P. vivax infection. DNA sequences from primary/recurrent P. vivax samples identified a single dbp allele among the samples from the outbreak area. To investigate inhibitory antibodies to the ligand domain of the DBP (cysteine-rich region II, DBP(II)), we performed in vitro assays with mammalian cells expressing DBP(II) sequences which were homologous or not to those from the outbreak isolate. In non-immune individuals, the results of a 12-month follow-up period provided evidence that naturally acquired inhibitory antibodies to DBP(II) are short-lived and biased towards a specific allele.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human transthyretin (TTR) is a homotetrameric protein involved in several amyloidoses. Zn(2+) enhances TTR aggregation in vitro, and is a component of ex vivo TTR amyloid fibrils. We report the first crystal structure of human TTR in complex with Zn(2+) at pH 4.6-7.5. All four structures reveal three tetra-coordinated Zn(2+)-binding sites (ZBS 1-3) per monomer, plus a fourth site (ZBS 4) involving amino acid residues from a symmetry-related tetramer that is not visible in solution by NMR.Zn(2+) binding perturbs loop E-alpha-helix-loop F, the region involved in holo-retinol-binding protein (holo-RBP) recognition, mainly at acidic pH; TTR affinity for holo-RBP decreases similar to 5-fold in the presence of Zn(2+). Interestingly, this same region is disrupted in the crystal structure of the amyloidogenic intermediate of TTR formed at acidic pH in the absence of Zn(2+). HNCO and HNCA experiments performed in solution at pH 7.5 revealed that upon Zn(2+) binding, although the alpha-helix persists, there are perturbations in the resonances of the residues that flank this region, suggesting an increase in structural flexibility. While stability of the monomer of TTR decreases in the presence of Zn(2+), which is consistent with the tertiary structural perturbation provoked by Zn(2+) binding, tetramer stability is only marginally affected by Zn(2+). These data highlight structural and functional roles of Zn(2+) in TTR-related amyloidoses, as well as in holo-RBP recognition and vitamin A homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traumatic brain injury (TBI) produces several cellular changes, such as gliosis, axonal and dendritic plasticity, and inhibition-excitation imbalance, as well as cell death, which can initiate epileptogenesis. It has been demonstrated that dysfunction of the inhibitory components of the cerebral cortex after injury may cause status epilepticus in experimental models; we proposed to analyze the response of cortical interneurons and astrocytes after TBI in humans. Twelve contusion samples were evaluated, identifying the expression of glial fibrillary acidic protein (GFAP) and calcium-binding proteins (CaBPs). The study was made in sectors with and without preserved cytoarchitecture evaluated with NeuN immunoreactivity (IR). In sectors with total loss of NeuN-IR the results showed a remarkable loss of CaBP-IR both in neuropil and somata. In sectors with conserved cytoarchitecture less drastic changes in CaBP-IR were detected. These changes include a decrease in the amount of parvalbumin (PV-IR) neurons in layer II, an increase of calbindin (CB-IR) neurons in layers III and V, and an increase in calretinin (CR-IR) neurons in layer II. We also observed glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the white matter, in the gray-white matter transition, and around the sectors with NeuN-IR total loss. These findings may reflect dynamic activity as a consequence of the lesion that is associated with changes in the excitatory circuits of neighboring hyperactivated glutamatergic neurons, possibly due to the primary impact, or secondary events such as hypoxia-ischemia. Temporal evolution of these changes may be the substrate linking severe cortical contusion and the resulting epileptogenic activity observed in some patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs). In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A(2) (TXA(2)) and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C(4) (LTC(4))-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA(2) analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD(7). In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA(2) analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA(2) analog U46619 is stabilized by hydrogen bonding interactions of the omega-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC(4) and occupies a very similar position to LTE(4) in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene silencing may occur in breast cancer samples from patients presenting with occult metastatic cells in the bone marrow and one mechanism regulating gene suppression is heterochromatin formation. We have studied whether members of the heterochromatin protein 1 family Hp1(Hs alpha), Hp1(Hs beta) and Hp1(Hs gamma) which take part in chromatin packaging and gene expression regulation, were differentially expressed in tumors from patients with and without occult metastatic cells in their bone marrow. Tumor samples and bone marrow aspirates were obtained from 37 breast cancer patients. Median age was 63 years and 68% of the patients presented with clinical stage I/II disease. Presence of occult metastatic cells in bone marrow was detected through keratin-19 expression by nested RT-PCR in samples from 20 patients (54.1%). The presence of occult metastatic cells in bone marrow was not associated with node involvement, histological grade, estrogen receptor and ERBB2 immunoexpression. Relative gene expression of HP1(Hs alpha), HP1(Hs beta) and HP1(Hs gamma) was determined by real-time RT-PCR and did not vary according to the presence of occult metastatic cells in bone marrow. In addition, the combined expression of these three transcripts could not be used to classify samples according to the presence of bone marrow micrometastasis. Our work indicates that regulation of heterochromatin formation through HP1 family members may not be the sole mechanism implicated in the metastatic process to the bone marrow. (Int J Biol Markers 2008; 23: 219-24)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis yeast cells can enter mammalian cells and may manipulate the host cell environment to favour their own growth and survival. Moreover, fibronectin and several other host extracellular matrix proteins are recognized by various components of the yeast cell extracts. The present study was designed to isolate and characterize a fibronectin-binding protein from P. brasiliensis. We also compared P. brasiliensis strain 18, tested before (Pb18a) and after (Pb18b) animal passage, in relation to its adhesion and invasion processes. Extracts from both samples, when cultured on blood agar solid medium, showed higher levels of protein expression than when the same samples were cultured on Fava-Netto solid medium, as demonstrated by two-dimensional electrophoresis and SDS-PAGE. Also, both Pb18a and Pb18b exhibited stronger adhesion to A549 epithelial cells when cultured on blood agar medium than when cultured on Fava-Netto medium. Ligand affinity binding assays revealed a protein of 54 kDa and pl 5.6 in P. brasiliensis cell-free extracts with the properties of a fibronectin-binding adhesin, which was characterized by tryptic digestion and mass spectroscopy as a homologue of enolase from P. brasiliensis. Antibody raised against this 54 kDa protein abolished 80 % of P. brasiliensis adhesion to A549 epithelial cells. Our results demonstrate that P. brasiliensis produces a fibronectin-binding adhesin, irrespective of the culture medium, and that this activity can be inhibited by a specific antibody and is involved in the adhesion of the fungus to pulmonary epithelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our data suggest that serum concentrations of insulin-like growth factor I and insulin-like growth factor binding protein 3 do not correlate with breast cancer development. (Fertil Steril (R) 2011;95:2753-5. (C)2011 by American Society for Reproductive Medicine.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The most primitive leukemic precursor in acute myeloid leukemia (AML) is thought to be the leukemic stem cell (LSC), which retains the properties of self-renewal and high proliferative capacity and quiescence of the hematopoietic stem cell. LSC seems to be immunophenotypically distinct and more resistant to chemotherapy than the more committed blasts. Considering that the multidrug resistance (MDR) constitutive expression may be a barrier to therapy in AML, we have investigated whether various MDR transporters were differentially expressed at the protein level by different leukemic subsets. Methods: The relative expression of the drug-efflux pumps P-gp, MRP, LRP, and BCRP was evaluated by mean fluorescence index (MFI) and the Kolmogorov-Smirnov analysis (D values) in five leukemic subpopulations: CD34(+)CD38(-)CD123(+) (LSCs), CD34(+)CD38(+)CD123(-), CD34(+)CD38(+)CD123(+), CD34(+)CD38(+)CD123(-), and CD34(-) mature cells in 26 bone marrow samples of CD34(+) AML cases. Results: The comparison between the two more immature subsets (LSC versus CD34(+)CD38(-)CD123(-) cells) revealed a higher P-gp, MRP, and LRP expression in LSCs. The comparative analysis between LSCs and subsets of intermediate maturation (CD34(+)CD38(+)) demonstrated the higher BCRP expression in the LSCs. In addition, P-gp expression was also significantly higher in the LSC compared to CD34(+)CD38(+)CD123(-) subpopulation. Finally, the comparative analysis between LSC and the most mature subset (CD34(-)) revealed higher MRP and LRP and lower P-gp expression in the LSCs. Conclusions: Considering the cellular heterogeneity of AML, the higher MDR transporters expression at the most immature, self-renewable, and quiescent LSC population reinforces that MDR is one of the mechanisms responsible for treatment failure. (C) 2008 Clinical Cytometry Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of TlyA, TlyB and TlyC proteins in the biology of Leptospira is still uncertain. Although these proteins have been considered as putative hemolysins, we demonstrate that leptospiral recombinant TlyB and TlyC do not possess hemolytic activity. However, further experiments showed that TlyC is a surface-exposed protein that seems to bind to laminin, collagen IV and fibronectin. The expression of both proteins was detected both in vitro and in vivo. Our findings suggest that TlyB and TlyC are not directly involved in hemolysis, and that TlyC may contribute to Leptospira binding to extracellular matrix (ECM) during host infection. (C) 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Schistosoma mansoni fatty acid binding protein (FABP), SmA, is a vaccine candidate against, S. mansoni and F hepatica. Previously, we demonstrated the importance of a correct fold to achieve protection in immunized animals after cercariae challenge [[10]. C.R.R. Ramos, R.C.R. Figueredo, T.A. Pertinhez, M.M. Vilar, A.L.T.O. Nascimento, M. Tendler, I. Raw, A. Spisni, P.L. Ho, Gene structure and M20T polymorphism of the Schistosoma mansoni Sm14 fatty acid-binding protein: structural, functional and immunoprotection analysis. J. Biol. Chem. 278 (2003) 12745-12751]. Here we show that the reduction of vaccine efficacy over time is due to protein dimerization and subsequent aggregation. We produced the mutants Sm14-M20(C62S) and Sm14M20(C62V) that, as expected, did not dimerize in SDS-PAGE. Molecular dynamics calculations and unfolding experiments highlighted a higher structural stability of these mutants with respect to the wild-type. In addition, we found that the mutated proteins, after thermal denaturation, refolded to their active native molecular architecture as proved by the recovery of the fatty acid binding ability. Sm14-M20(C62V) turned out to be the more stable form over time, providing the basis to determine the first 3D solution structure of a Sm14 protein in its apo-form. Overall, Sm14-M20(C62V) possesses an improved structural stability over time, an essential feature to preserve its immunization capability and, in experimentally immunized animals, it exhibits a protection effect against S. mansoni cercariae infections comparable to the one obtained with the wild-type protein. These facts indicate this protein as a good lead molecule for large-scale production and for developing an effective Sm14 based anti-helminthes vaccine. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Mucoepidermoid carcinoma (MEC), the most common primary salivary malignancy, shows great variability in clinical behaviour, thus demanding investigation to identify of prognostic markers. Since Warburg`s studies, unrestricted cell growth during tumorigenesis has been linked to altered metabolism, implying hypoxic stimulation of glycolysis and diminished contribution of mitochondrial oxidative phosphorylation to cellular ATP supply. Hypothesizing that the study of MEC metabolic status could lead to the discovery of prognostic markers, we investigated by immunohistochemistry the expression of glucose transporter 1 (Glut-1), mitochondrial antigen and peroxiredoxin I (Prx I) in samples of MEC from different histological grades. Our results showed that mitochondrial antigen and Prx I were expressed in the majority of the MEC cases independent of the histological grade. In contrast Glut-1 expression increased significantly as the tumours became more aggressive. These results suggested that oxidative phosphorylation may contribute to ATP supply in all stages of MEC progression, and that the relative contribution of glycolysis over mitochondria for cellular ATP supply increases during MEC progression, favouring growth under low oxygen concentration. In addition, the observed high Prx I protein levels could provide protection to tumour cells against reactive oxygen species generated as a consequence of mitochondrial function and hypoxia-reoxygenation cycling. Altogether our findings suggest that upregulation of Glut-1 and Prx I constitute successful adaptive strategies of MEC cells conferring a growth advantage over normal salivary gland cells in the unstable oxygenation tumour environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Although the general mechanisms of dentinogenesis are understood, several aspects regarding tertiary dentine formation still deserve investigation, especially regarding the presence and distribution of some noncollagenous matrix proteins. As dentine matrix protein 1 (DMP 1) is present in primary dentine, it is possible that this protein may also be present in the dentine matrix secreted after injury, but there are no immunocytochemical studies attempting its detection in tertiary dentine. The aim of this study was to examine the ultrastructural immunolocalization of DMP 1 in the tertiary dentine after extrusion of the rat incisor. Study design: Upper incisors were extruded 3 mm and then repositioned into their sockets. After several periods, the incisors were fixed and processed for transmission electron microscopy and for immunocytochemistry for DMP 1. Results: Extrusion yielded both types of tertiary dentine, which varied in aspect and related cells. DMP 1 was found in the mineralized matrix of all types of dentine, presenting high affinity for collagen, but rare colloidal gold particles over predentine. DMP 1 was evident in the supranuclear region and inside the nucleus of some odontoblast-like cells. Conclusion: The observed association between DMP 1 and collagen seem to be essential for reactionary and reparative dentine formation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Fibroblasts are considered important cells in periodontitis. When challenged by different agents, they respond through the release of cytokines that participate in the inflammatory process. The aim of this study is to evaluate and compare the expression and production of macrophage inflammatory protein (MIP)-1 alpha, stromal-derived factor (SDF)-1, and interleukin (IL)-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide (LPS) from Porphyromonas gingivalis. Methods: Fibroblasts were cultured from biopsies of gingival tissue and periodontal ligament of the same donors and used on the fourth passage. After confluence in 24-well plates, the culture medium alone (control) or with 0.1 to 10 mu g/ml of LPS from P. gingivalis was added to the wells, and after 1, 6, and 24 hours, the supernatant and the cells were collected and analyzed by enzyme-linked immunosorbent assay and real-time polymerase chain reaction, respectively. Results: MIP-1 alpha, SDF-1, and IL-6 protein production was significantly greater in gingival fibroblasts compared to periodontal ligament fibroblasts. IL-6 was upregulated in a time-dependent manner, mainly in gingival fibroblasts (P<0.05), which secreted more MIP-1 alpha in the lowest concentration of LPS used (0.1 mu g/ml). In contrast, a basal production of SDF-1 that was inhibited with the increase of LPS concentration was detected, especially after 24 hours (P<0.05). Conclusion: The distinct ability of the gingival and periodontal ligament fibroblasts to secrete MIP-1 alpha, SDF-1, and IL-6 emphasizes that these cells may differently contribute to the balance of cytokines in the LPS-challenged periodontium. J Periodontol 2010;81:310-317.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prion protein (PrP(C)) is a conserved glycosylphosphatidyl-inositol-anchored cell surface protein expressed by neurons and other cells. Stress-inducible protein 1 (STI1) binds PrP(C) extracellularly, and this activated signaling complex promotes neuronal differentiation and neuroprotection via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP-dependent protein kinase 1 (PKA) pathways. However, the mechanism by which the PrPC-STI1 interaction transduces extracellular signals to the intracellular environment is unknown. We found that in hippocampal neurons, STI1-PrP(C) engagement induces an increase in intracellular Ca(2+) levels. This effect was not detected in PrP(C)-null neurons or wild-type neurons treated with an STI1 mutant unable to bind PrP(C). Using a best candidate approach to test for potential channels involved in Ca(2+) influx evoked by STI1-PrP(C), we found that alpha-bungarotoxin, a specific inhibitor for alpha 7 nicotinic acetylcholine receptor (alpha 7nAChR), was able to block PrP(C)-STI1-mediated signaling, neuroprotection, and neuritogenesis. Importantly, when alpha 7nAChR was transfected into HEK 293 cells, it formed a functional complex with PrP(C) and allowed reconstitution of signaling by PrP(C)-STI1 interaction. These results indicate that STI1 can interact with the PrP(C).alpha 7nAChR complex to promote signaling and provide a novel potential target for modulation of the effects of prion protein in neurodegenerative diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prion protein (PrPC), when associated with the secreted form of the stress-inducible protein 1 (STI1), plays an important role in neural survival, neuritogenesis, and memory formation. However, the role of the PrP(C)-STI1 complex in the physiology of neural progenitor/stem cells is unknown. In this article, we observed that neurospheres cultured from fetal forebrain of wild-type (Prnp(+/+)) and PrP(C)-null (Prnp(0/0)) mice were maintained for several passages without the loss of self-renewal or multipotentiality, as assessed by their continued capacity to generate neurons, astrocytes, and oligodendrocytes. The homogeneous expression and colocalization of STI1 and PrP(C) suggest that they may associate and function as a complex in neurosphere-derived stem cells. The formation of neurospheres from Prnp(0/0) mice was reduced significantly when compared with their wild-type counterparts. In addition, blockade of secreted STI1, and its cell surface ligand, PrP(C), with specific antibodies, impaired Prnp(+/+) neurosphere formation without further impairing the formation of Prnp(0/0) neurospheres. Alternatively, neurosphere formation was enhanced by recombinant STI1 application in cells expressing PrP(C) but not in cells from Prnp(0/0) mice. The STI1-PrP(C) interaction was able to stimulate cell proliferation in the neurosphere-forming assay, while no effect on cell survival or the expression of neural markers was observed. These data suggest that the STI1-PrP(C) complex may play a critical role in neural progenitor/stem cells self-renewal via the modulation of cell proliferation, leading to the control of the stemness capacity of these cells during nervous system development. STEM CELLS 2011;29:1126-1136