50 resultados para Glycogen Staining


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitotic chromosomes of Metynnis maculatus (KNER 1860) (Teleostei, Characiformes), a fish species that occurs in the Amazon and Parana-Paraguay river basins, were analyzed for the first time by Giemsa and Ag-NOR staining, C-banding and fluorescence in situ hybridization (FISH) with 18S and 5S rDNA sequences. The basic chromosome number of the species is 2n=62 (32M+22SM+4ST+4A) and, in addition to the 62 regular chromosomes, one small acrocentric supernumerary B chromosome was found in part of the specimens analyzed. Four active NORs were present, and constitutive heterochromatin blocks were found in the pericentromeric region of several chromosomes. A heterochromatic block was also present in the interstitial portion of the submetacentric NOR-bearing pair and the B chromosome was entirely heterochromatic. FISH using an 18S rDNA probe confirmed the results obtained with AgNO(3) staining, and an additional signal was also present on the B chromosomes. 5S rDNA sequences mapped only to the largest acrocentric pair. This is the first description of supernumerary B chromosomes in Serrasalminae, and this karyotype characterization may be useful in further studies about chromosome evolution in this fish group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescence in situ hybridization (FISH) using telomeric and ribosomal sequences was performed in four species of toad genus Chaunus: C. ictericus, C. jimi, C. rubescens and C. schneideri. Analyses based on conventional, C-banding and Ag-NOR staining were also carried out. The four species present a 2n = 22 karyotype, composed by metacentric and submetacentric chromosomes, which were indistinguishable either after conventional staining or banding techniques. Constitutive heterochromatin was predominantly located at pericentromeric regions, and telomeric sequences (TTAGGG)(n) were restricted to the end of all chromosomes. Silver staining revealed Ag-NORs located at the short arm of pair 7, and heteromorphism in size of NOR signals was also observed. By contrast, FISH with ribosomal probes clearly demonstrated absence of any heteromorphism in size of rDNA sequences, suggesting that the difference observed after Ag-staining should be attributed to differences in chromosomal condensation and/or gene activity rather than to the number of ribosomal cistrons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromosomes of the South American geckos Gymnodactylus amarali and G. geckoides from open and dry areas of the Cerrado and Caatinga biomes in Brazil, respectively, were studied for the first time, after conventional and AgNOR staining, CBG- and RBG-banding, and FISH with telomeric sequences. Comparative analyses between the karyotypes of open areas and the previously studied Atlantic forest species G. darwinii were also performed. The chromosomal polymorphisms detected in populations of G. amarali from the states of Goias and Tocantins is the result of centric fusions (2n = 38, 39 and 40), suggesting a differentiation from a 2n = 40 ancestral karyotype and the presence of supernumerary chromosomes. The CBG- and RBG-banding patterns of the Bs are described. G. geckoides has 40 chromosomes with gradually decreasing sizes, but it is distinct from the 2n = 40 karyotypes of G. amarali and G. darwinii due to occurrence of pericentric inversions or centromere repositioning. NOR location seems to be a marker for Gymnodactylus, as G. amarali and G. geckoides share a medium-sized subtelocentric NOR-bearing pair, while G. darwinii has NORs at the secondary constriction of the long arm of pair 1. The comparative analyses indicate a non-random nature of the Robertsonian rearrangements in the genus Gymnodactylus. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies about composition of repetitive sequences and their chromosomal location have been helpful to evolutionary studies in many distinct organisms. In order to keep on assessing the possible relationships among different cytotypes of Astyanax fasciatus (Teleostei, Characiformes) in the Mogi-Guacu River (Sao Paulo State, Brazil), C-banding, chromomycin A 3 staining, and fluorescent in situ hybridization with a repetitive DNA sequence (As51) isolated from Astyanax scabripinnis were performed in the present work. The constitutive heterochromatin was distributed in terminal regions on long arms of submetacentric, subtelocentric, and acrocentric chromosomes and in the terminal region on short arms of a pair of submetacentric chromosomes in both standard cytotypes. This latter heterochromatic site was also GC-rich, as revealed by chromomycin A(3) staining, corresponding to the nucleolar organizer region (NOR), as shown by previous studies. The sites of the satellite As51 DNA were located in terminal regions on long arms of several chromosomes. Some variant karyotypic forms, which diverge from the two standard cytotypes, also presented distinctive chromosomes carrying As51 satellite DNA. It is possible that the standard 2n = 46 cytotype represents an invader population in the Mogi-Guacu River able to interbreed with the resident standard 2n = 48 cytotype. Therefore, the variant karyotypes would be related to a possible viable offspring, where complementary chromosomal rearrangements could favor new locations of the satellite DNA analyzed. Copyright (C) 2008 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The architecture of the amygdaloid complex of a marsupial, the opossum Didelphis aurita, was analyzed using classical stains like Nissl staining and myelin (Gallyas) staining, and enzyme histochemistry for acetylcholinesterase and NADPH-diaphorase. Most of the subdivisions of the amygdaloid complex described in eutherian mammals were identified in the opossum brain. NADPH-diaphorase revealed reactivity in the neuropil of nearly all amygdaloid subdivisions with different intensities, allowing the identification of the medial and lateral subdivisions of the cortical posterior nucleus and the lateral subdivision of the lateral nucleus. The lateral, central, basolateral and basomedial nuclei exhibited acetylcholinesterase positivity, which provided a useful chemoarchitectural criterion for the identification of the anterior basolateral nucleus. Myelin stain allowed the identification of the medial subdivision of the lateral nucleus, and resulted in intense staining of the medial subdivisions of the central nucleus. The medial, posterior, and cortical nuclei, as well as the amygdalopiriform area did not exhibit positivity for myelin staining. On the basis of cyto- and chemoarchitectural criteria, the present study highlights that the opossum amygdaloid complex shares similarities with that of other species, thus supporting the idea that the organization of the amygdala is part of a basic plan conserved through mammalian evolution. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents the in-vivo evaluation of Ti-13Nb-13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants` were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit`s tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti-13Nb-13Zr processed through the hydride powder route. (c) 2007 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short chain fatty acids (SCFAs) are metabolic by products of anerobic bacteria fermentation. These fatty acids, despite being an important fuel for colonocytes, are also modulators of leukocyte function. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate, and butyrate) on function of neutrophils, and the possible mechanisms involved. Neutrophils obtained from rats by intraperitoneal lavage 4 h after injection of oyster glycogen solution (1%) were treated with non toxic concentrations of the fatty acids. After that, the following measurements were performed: phagocytosis and destruction of Candida albicans, production of ROS (O(2)(center dot-), H(2)O(2), and HOCl) and degranulation. Gene expression (p47(phox) and p22(phox)) and protein phosphorylation (p47(phox)) were analyzed by real time reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. Butyrate inhibited phagocytosis and killing of C. albicans. This SCFA also had an inhibitory effect on production of O(2)(center dot-), H(2)O(2), and HOCI by neutrophils stimulated with PMA or fMLP. This effect of butyrate was not caused by modulation of expression of NADPH oxidase subunits (p47(phox) and p22(phox)) but it was in part due to reduced levels of p47(phox) phosphorylation and an increase in the concentration of cyclic AMP. Acetate increased the production of O(2)(center dot-) and H(2)O(2), in the absence of stimuli but had no effect on phagocytosis and killing of C. albicans. Propionate had no effect on the parameters studied. These results suggest that butyrate can modulate neutrophil function, and thus could be important in inflammatory neutrophil-associated diseases. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the chronic effects of palmitate on fatty acid (FA) oxidation, AMPK/ACC phosphorylation/activation, intracellular lipid accumulation, and the molecular Mechanisms involved in these processes in skeletal muscle cells. Exposure of L6 myotubes for 8 h to 200, 400, 600, and 800 mu M of palmitate did rot affect cel viability but significantly reduced FA oxidation by similar to 26.5%, similar to 43.5%, similar to 50%, and similar to 47%, respectively. Interestingly, this occurred despite significant increases in AMPK (similar to 2.5-fold) and ACC (similar to 3-fold) phosphorylation and in malonyl-CoA decarboxylase activity (similar to 38-60%). Low concentrations of palmitate (50-100 mu M) caused an increase (similar to 30%) in CPT-I activity. However, as the concentration of palmitate increased, CPT-I activity decreased by similar to 32% after exposure for 8 h to 800 mu M of palmitate. Although FA uptake was reduced (similar to 35%) in cells exposed to increasing, palmitate concentrations, intracellular lipid accumulation increased in a dose-dependent manner, reaching values similar to 2.3-, similar to 3-, and 4-fold higher than control in muscle cells exposed to 400, 600, and 800 mu M palmitate, respectively. Interestingly, myotubes exposed to 400 mu M of palmitate for 1h increased basal glucose uptake and glycogen synthesis by similar to 40%. However, as time of incubation in the presence of palmitate progressed from 1 to 8h, these increases were abolished and a time-dependent inhibition of insulin-stimulated glucose uptake (similar to 65%) and glycogen synthesis (30%) was observed in myotubes. These findings may help explain the dysfunctional adaptations that occur in glucose and FA Metabolism in skeletal muscle under conditions of chronically elevated circulating levels of non-esterified FAs. Such as in obesity and Type 2 Diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Glimepiride, a low-potency insulin secretagogue, is as efficient on glycaemic control as other sulphonylureas, suggesting an additional insulin-sensitizer role. The aim of the present study was to confirm the insulin-sensitizer role of glimepiride and to show extra-pancreatic effects of the drug. Methods: Three-month-old monosodium glutamate (MSG)-induced obese insulin-resistant rats were treated (OG) or not treated (O) with glimepiride for 4 weeks and compared with age-matched non-obese rats (C). Insulin sensitivity in whole body, glucose transporter 4 (GLUT4) protein content, glucose uptake and glycogen synthesis in oxidative skeletal muscle and phospho-glycogen synthase kinase (p-GSK3) and glycogen content in liver were analysed. Results: Insulin sensitivity, analysed by the insulin tolerance test, was 30% lower in O than in C rats (p < 0.05), and OG rats recovered this parameter (p < 0.05). In oxidative muscle, glimepiride increased the GLUT4 protein content (50%, p < 0.001) and recovered the obesity-induced reduction (similar to 20%) of the in vitro insulin-stimulated glucose uptake and incorporation into glycogen. In liver, glimepiride increased p-GSK3 (p < 0.01) and glycogen (p < 0.05) contents. Conclusion: The increased GLUT4 protein expression and glucose utilization in oxidative muscle and the increased insulin sensitivity and glycogen storage in liver evidence the insulin-sensitizer effect of glimepiride, which must be important to enable the glimepiride drug to promote an efficient glycaemic control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration and neuro protection. The aim of this study was to evaluate the effects of unilateral retinal ablation on the expression of the cannabinoid receptor subtype 1 (CB1) at both protein and mRNA levels in the optic tectum of the adult chick brain. After different survival times postlesion (2-30 days), the chick brains were subjected to immunohistochemical, immunoblotting, and real-time PCR procedures to evaluate CB1 expression. TUNEL and Fluoro-Jade B were used to verify the possible occurrence of cell death, and immunostaining for the microtubule-associated protein MAP-2 was performed to verify possible dendritic remodeling after lesions. No cell death could be observed in the deafferented tectum, at least up to 30 days postlesion, although Fluoro-Jade B could reveal degenerating axons and terminals. Retinal ablation seems to generate an increase of CB1 protein in the optic tectum and other retinorecipient visual areas, which paralleled an increase in MAP-2 staining. On the other hand, CB, mRNA levels were not changed after retinal ablation. Our results reveal that CB, expression in visual structures of the adult chick brain may be negatively regulated by the retinal innervation. The increase of CB1 receptor expression observed after retinal removal indicates that these receptors are not presynaptic in retinal axons projecting to the tectum and suggests a role of the cannabinoid system in plasticity processes ensuing after lesions. (c) 2008 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin replacement is the only effective therapy to manage hyperglycemia in type 1 diabetes mellitus (T1DM). Nevertheless, intensive insulin therapy has inadvertently led to insulin resistance. This study investigates mechanisms involved in the insulin resistance induced by hyperinsulinization. Wistar rats were rendered diabetic by alloxan injection, and 2 weeks later received saline or different doses of neutral protamine Hagedorn insulin (1.5, 3, 6, and 9 U/day) over 7 days. Insulinopenic-untreated rats and 6U- and 9U-treated rats developed insulin resistance, whereas 3U-treated rats revealed the highest grade of insulin sensitivity, but did not achieve good glycemic control as 6U- and 9U-treated rats did. This insulin sensitivity profile was in agreement with glucose transporter 4 expression and translocation in skeletal muscle, and insulin signaling, phosphoenolpyruvate carboxykinase/glucose-6-phosphatase expression and glycogen storage in the liver. Under the expectation that insulin resistance develops in hyperinsulinized diabetic patients, we believe insulin sensitizer approaches should be considered in treating T1DM. Journal of Endocrinology (2011) 211, 55-64

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here the protein expression of TRPV1 receptor in axotomized rat retinas and its possible participation in mechanisms involved in retinal ganglion cell (RGC) death. Adult rats were subjected to unilateral, intraorbital axotomy of the optic nerve, and the retinal tissue was removed for further processing. TRPV1 total protein expression decreased progressively after optic nerve transection, reaching 66.2% of control values 21 days after axotomy. The number of cells labeled for TRPV1 in the remnant GCL decreased after 21 days post-lesion (to 63%). Fluoro-jade B staining demonstrated that the activation of TRPV1 in acutely-lesioned eyes elicited more intense neuronal degeneration in the GCL and in the inner nuclear layer than in sham-operated retinas. A single intraocular injection of capsazepine (100 mu M), a TRPV1 antagonist, 5 days after optic nerve lesion, decreased the number of GFAP-expressing Muller cells (72.5% of control values) and also decreased protein nitration in the retinal vitreal margin (75.7% of control values), but did not affect lipid peroxidation. Furthermore, retinal explants were treated with capsaicin (100 mu M), and remarkable protein nitration was then present, which was reduced by blockers of the constitutive and inducible nitric oxide synthases (7-NI and aminoguanidine, respectively). TRPV1 activation also increased GFAP expression, which was reverted by both TRPV1 antagonism with capsazepine and by 7-NI and aminoguanidine. Given that Muller cells do not express TRPV1, we suppose that the increased GFAP expression in these cells might be elicited by TRPV1 activation and by its indirect effect upon nitric oxide overproduction and peroxynitrite formation. We incubated Fluorogold pre-labeled retinal explants in the presence of capsazepine (1 mu M) during 48 h. The numbers of surviving RGCs stained with fluorogold and the numbers of apoptotic cells in the GCL detected with TUNEL were similar in lesioned and control retinas. We conclude that TRPV1 receptor expression decreased after optic nerve injury due to death of TRPV1-containing cells. Furthermore, these data indicate that TRPV1 might be involved in intrinsic protein nitration and Muller cell reaction observed after optic nerve injury. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high ingestion of oleic (OLA) and linoleic (LNA) acids by Western populations, the presence of inflammatory diseases in these populations, and the importance of neutrophils in the inflammatory process led us to investigate the effects of oral ingestion of unesterified OLA and LNA on rat neutrophil function. Pure OLA and LNA were administered by gavage over 10 days. The doses used (0.11, 0.22 and 0.44 g/kg of body weight) were based on the Western consumption of OLA and LNA. Neither fatty acid affected food, calorie or water intake. The fatty acids were not toxic to neutrophils as evaluated by cytometry using propidium iodide (membrane integrity and DNA fragmentation). Neutrophil migration in response to intraperitoneal injection of glycogen and in the air pouch assay, was elevated after administration of either OLA or LNA. This effect was associated with enhancement of rolling and increased release of the chemokine CINC-2 alpha beta. Both fatty acids elevated l-selectin expression, whereas no effect on beta(2)-integrin expression was observed, as evaluated by flow cytometry. LNA increased the production of proinflammatory cytokines (IL-1 beta and CINC-2 alpha beta) by neutrophils after 4 h in culture and both fatty acids decreased the release of the same cytokines after 18 h. In conclusion, OLA and LNA modulate several functions of neutrophils and can influence the inflammatory process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short chain fatty acids (SCFAs) are fermentation products of anaerobic bacteria. More than just being an important energy source for intestinal epithelial cells, these compounds are modulators of leukocyte function and potential targets for the development of new drugs. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate and butyrate) on production of nitric oxide (NO) and proinflammatory cytokines [tumor necrosis factor alpha (TNF-alpha) and cytokine-induced neutrophil chemoattractant-2 (CINC-2 alpha beta)] by rat neutrophils. The involvement of nuclear factor kappa B (NF-kappa B) and histone deacetylase (HDAC) was examined. The effect of butyrate was also investigated in vivo after oral administration of tributyrin (a pro-drug of butyrate). Propionate and butyrate diminished TNF-alpha, CINC-2 alpha beta and NO production by LPS-stimulated neutrophils. We also observed that these fatty acids inhibit HDAC activity and NF-kappa B activation, which might be involved in the attenuation of the LPS response. Products of cyclooxygenase and 5-lipoxygenase are not involved in the effects of SCFAs as indicated by the results obtained with the inhibitors of these enzymes. The recruitment of neutrophils to the peritonium after intraperitoneal administration of a glycogen solution (1%) and the ex vivo production of cytokines and NO by neutrophils were attenuated in rats that previously received tributyrin. These results argue that this triglyceride may be effective in the treatment of inflammatory conditions. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as obesity and type 2 diabetes mellitus. These high levels of plasma FFA are proposed to play an important role for the development of insulin resistance but the mechanisms involved are still unclear. This study investigated the effects of saturated and unsaturated FFA on insulin sensitivity in parallel with mitochondrial function. C2C12 myotubes were treated for 24 h with 0.1 mM of saturated (palmitic and stearic) and unsaturated (oleic, linoleic, eicosapentaenoic, and docosahexaenoic) FFA. After this period, basal and insulin-stimulated glucose metabolism and mitochondrial function were evaluated. Saturated palmitic and stearic acids decreased insulin-induced glycogen synthesis, glucose oxidation, and lactate production. Basal glucose oxidation was also reduced. Palmitic and stearic acids impaired mitochondrial function as demonstrated by decrease of both mitochondrial hyperpolarization and ATP generation. These FFA also decreased Akt activation by insulin. As opposed to saturated FFA, unsaturated FFA did not impair glucose metabolism and mitochondrial function. Primary cultures of rat skeletal muscle cells exhibited similar responses to saturated FFA as compared to C2C12 cells. These results show that in muscle cells saturated FFA-induced mitochondrial dysfunction associated with impaired insulin-induced glucose metabolism. J. Cell. Physiol. 222: 187-194, 2010. (C) 2009 Wiley-Liss, Inc.