21 resultados para Glial cell line-derived neurotrophic factor (GDNF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure of phosphatidylserine (PS) on cellular membranes and membrane-derived microvesicles stimulates a number of anti-inflammatory responses involved in malignant processes. Herein we show that B16F10 cells, a highly metastatic melanoma cell line, produce large quantities of PS-containing microvesicles in vitro. Tumor microvesicles increased TGF-beta(1) production by cultured macrophages and, in vivo, enhanced the metastatic potential of B16F10 cells in C57BL/6 mice, both effects being reversed by annexin V. Most strikingly, microvesicles induced melanoma metastasis in BALB/c mice, which are normally resistant to this tumor cell line. Altogether, this is the first demonstration that tumor-derived microvesicles favor the establishment of melanoma metastasis in a PS-dependent manner, possibly by down-regulating the host`s inflammatory and/or anti-tumoral immune responses. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEIC293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the PI position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allergy to components of the diet is followed by gut inflammation which in children, sometimes progress to mucosal lesions and anaphylaxis. In newborns suffering of cow`s milk allergy, bloody stools, rectal. bleeding and ulcerations are found. The rat systemic anaphylaxis is a suitable model to study the intestinal lesions associated to allergy. In the present study we used this model to investigate some mechanisms involved. We found that 15 min after antigen challenge of sensitized rats, hemorrhagic lesions develop in the small intestine. The lesions were more severe in jejunum and ileum compared to duodenum. Pretreatment of the rats with a platelet-activating factor-receptor antagonist (WEB-2170) reduced the lesions whereas inhibition of endogenous nitric oxide by L-NAME, greatly increased the hemorrhagic lesions and mortality. Both, lesions and mortality were reversed by L-arginine. The hemorrhagic lesions were also significantly reduced by the mast cell stabilizers, disodium cromoglycate and ketotifen as well as by neutrophils depletion (with anti-PMN antibodies) or inhibition of selectin binding (by treatment with fucoidan). Thus, the intestinal hemorrhagic lesions in this model are dependent on ptatelet-activating factor, mast cell granule-derived mediators and neutrophils. Endogenous nitric oxide and supplementation with L-arginine has a protective role, reducing the lesions and preventing mortality. These results contributed to elucidate mechanisms involved in intestinal lesions which could be of relevance to human small bowel injury associated to allergy. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are investigating effects of the depsipeptide geodiamolide H, isolated from the Brazilian sponge Geodia corticostylifera, on cancer cell lines grown in 3D environment. As shown previously geodiamolide H disrupts actin cytoskeleton in both sea urchin eggs and breast cancer cell monolayers. We used a normal mammary epithelial cell line MCF 10A that in 3D assay results formation of polarized spheroids. We also used cell lines derived from breast tumors with different degrees of differentiation: MCF7 positive for estrogen receptor and the Hs578T, negative for hormone receptors. Cells were placed on top of Matrigel. Spheroids obtained from these cultures were treated with geodiamolide H. Control and treated samples were analyzed by light and confocal microscopy. Geodiamolide H dramatically affected the poorly differentiated and aggressive Hs578T cell line. The peptide reverted HsS78T malignant phenotype to polarized spheroid-like structures. MCF7 cells treated by geodiamolide H exhibited polarization compared to controls. Geodiamolide H induced striking phenotypic modifications in Hs578T cell line and disruption of actin cytoskeleton. We investigated effects of geodiamolide H on migration and invasion of Hs578T cells. Time-lapse microscopy showed that the peptide inhibited migration of these cells in a dose-dependent manner. Furthermore invasion assays revealed that geodiamolide H induced a 30% decrease on invasive behavior of Hs578T cells. Our results suggest that geodiamolide H inhibits migration and invasion of Hs578T cells probably through modifications in actin cytoskeleton. The fact that normal cell lines were not affected by treatment with geodiamolide H stimulates new studies towards therapeutic use for this peptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protoporphyrin (Pp IX) derivatives were prepared to study the relationship between photosensitizer structure and photoactivity, with an emphasis on understanding the role of membrane interactions in the efficiency of photosensitizers used in photodynamic therapy (PDT). The synthetic strategies described here aimed at changing protoporphyrin periferic groups, varying overall charge and oil/water partition, while maintaining their photochemical properties. Three synthetic routes were used: (1) modification of Pp IX at positions 3(1) and 8(1) by addition of alkyl amine groups of different lengths (compounds 2-5), (2) change of Pp IX at positions 13(3) and 17(3), generating alkyl amines (compounds 6 and 7), a phosphate amine (compound 8), and quarternary ammonium compounds (compounds 9 and 10), and (3) amine-alkylation of Hematoporphyrin IX (Hp IX) at positions 3(1), 8(1), 13(3) and 17(3) (compound 12). Strategy 1 leads to hydrophobic compounds with low photocytotoxicity. Strategy 2 leads to compounds 6-10 that have high levels of binding/incorporation in vesicles, mitochondria and cells, which are indicative of high bioavailability. Addition of the phosphate group (compound 8), generates an anionic compound that has low liposome and cell incorporation, plus low photocytotoxicity. Compound 12 has intermediate incorporation and photocytotoxic properties. Compound modification is also associated with changes in their sub-cellular localization: 30% of 8 (anionic) is found in mitochondria as compared to 95% of compound 10 (cationic). Photocytotoxicity was shown to be highly correlated with membrane affinity, which depends on the asymmetrical and amphiphilic characters of sens, as well as with sub-cellular localization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The expression levels of the clotting initiator protein Tissue Factor (TF) correlate with vessel density and the histological malignancy grade of glioma patients. Increased procoagulant tonus in high grade tumors (glioblastomas) also indicates a potential role for TF in progression of this disease, and suggests that anticoagulants could be used as adjuvants for its treatment. Objectives: We hypothesized that blocking of TF activity with the tick anticoagulant Ixolaris might interfere with glioblastoma progression. Methods and results: TF was identified in U87-MG cells by flow-cytometric and functional assays (extrinsic tenase). In addition, flow-cytometric analysis demonstrated the exposure of phosphatidylserine in the surface of U87-MG cells, which supported the assembly of intrinsic tenase (FIXa/FVIIIa/FX) and prothrombinase (FVa/FXa/prothrombin) complexes, accounting for the production of FXa and thrombin, respectively. Ixolaris effectively blocked the in vitro TF-dependent procoagulant activity of the U87-MG human glioblastoma cell line and attenuated multimolecular coagulation complexes assembly. Notably, Ixolaris inhibited the in vivo tumorigenic potential of U87-MG cells in nude mice, without observable bleeding. This inhibitory effect of Ixolaris on tumor growth was associated with downregulation of VEGF and reduced tumor vascularization. Conclusion: Our results suggest that Ixolaris might be a promising agent for anti-tumor therapy in humans.