31 resultados para Geometric Distributions
Resumo:
Recent experiments have shown that the multimode approach for describing the fission process is compatible with the observed results. Asystematic analysis of the parameters obtained by fitting the fission-fragment mass distribution to the spontaneous and low-energy data has shown that the values for those parameters present a smooth dependence upon the nuclear mass number. In this work, a new methodology is introduced for studying fragment mass distributions through the multimode approach. It is shown that for fission induced by energetic probes (E > 30 MeV) the mass distribution of the fissioning nuclei produced during the intranuclear cascade and evaporation processes must be considered in order to have a realistic description of the fission process. The method is applied to study (208)Pb, (238)U, (239)Np and (241)Am fission induced by protons or photons.
Resumo:
Neutron multiplicities for several targets and spallation products of proton-induced reactions in thin targets of interest to an accelerator-driven system obtained with the CRISP code have been reported. This code is a Monte Carlo calculation that simulates the intranuclear cascade and evaporationl fission competition processes. Results are compared with experimental data, and agreement between each other can be considered quite satisfactory in a very broad energy range of incitant particles and different targets.
Resumo:
Park CY, Tambe D, Alencar AM, Trepat X, Zhou EH, Millet E, Butler JP, Fredberg JJ. Mapping the cytoskeletal prestress. Am J Physiol Cell Physiol 298: C1245-C1252, 2010. First published February 17, 2010; doi: 10.1152/ajpcell.00417.2009.-Cell mechanical properties on a whole cell basis have been widely studied, whereas local intracellular variations have been less well characterized and are poorly understood. To fill this gap, here we provide detailed intracellular maps of regional cytoskeleton (CSK) stiffness, loss tangent, and rate of structural rearrangements, as well as their relationships to the underlying regional F-actin density and the local cytoskeletal prestress. In the human airway smooth muscle cell, we used micropatterning to minimize geometric variation. We measured the local cell stiffness and loss tangent with optical magnetic twisting cytometry and the local rate of CSK remodeling with spontaneous displacements of a CSK-bound bead. We also measured traction distributions with traction microscopy and cell geometry with atomic force microscopy. On the basis of these experimental observations, we used finite element methods to map for the first time the regional distribution of intracellular prestress. Compared with the cell center or edges, cell corners were systematically stiffer and more fluidlike and supported higher traction forces, and at the same time had slower remodeling dynamics. Local remodeling dynamics had a close inverse relationship with local cell stiffness. The principal finding, however, is that systematic regional variations of CSK stiffness correlated only poorly with regional F-actin density but strongly and linearly with the regional prestress. Taken together, these findings in the intact cell comprise the most comprehensive characterization to date of regional variations of cytoskeletal mechanical properties and their determinants.
Resumo:
The angular distributions for elastic scattering and breakup of halo nuclei are analysed using a near-side/far-side decomposition within the framework of the dynamical eikonal approximation. This analysis is performed for (11)Be impinging on Pb at 69 MeV/nucleon. These distributions exhibit very similar features. In particular they are both near-side dominated, as expected from Coulomb-dominated reactions. The general shape of these distributions is sensitive mostly to the projectile-target interactions, but is also affected by the extension of the halo. This suggests the elastic scattering not to be affected by a loss of flux towards the breakup channel. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The (16)O+(27)Al elastic and inelastic angular distributions have been measured in a broad angular range (13 degrees < theta(lab) < 52 degrees) at about 100 MeV incident energy. The use of the MAGNEX large acceptance magnetic spectrometer and of the ray-reconstruction analysis technique has been crucial in order to provide, in the same experiment, high-resolution energy spectra and cross-section measurements distributed over more than seven orders of magnitude down to hundreds of nb/sr. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Based only on the parallel-transport condition, we present a general method to compute Abelian or non-Abelian geometric phases acquired by the basis states of pure or mixed density operators, which also holds for nonadiabatic and noncyclic evolution. Two interesting features of the non-Abelian geometric phase obtained by our method stand out: i) it is a generalization of Wilczek and Zee`s non-Abelian holonomy, in that it describes nonadiabatic evolution where the basis states are parallelly transported between distinct degenerate subspaces, and ii) the non-Abelian character of our geometric phase relies on the transitional evolution of the basis states, even in the nondegenerate case. We apply our formalism to a two-level system evolving nonadiabatically under spontaneous decay to emphasize the non- Abelian nature of the geometric phase induced by the reservoir. We also show, through the generalized invariant theory, that our general approach encompasses previous results in the literature. Copyright (c) EPLA, 2008.
Resumo:
Mebendazole (MBZ) is a common benzimidazole anthelmintic that exists in three different polymorphic forms, A, B, and C. Polymorph C is the pharmaceutically preferred form due to its adequated aqueous solubility. No single crystal structure determinations depicting the nature of the crystal packing and molecular conformation and geometry have been performed on this compound. The crystal structure of mebendazole form C is resolved for the first time. Mebendazole form C crystallizes in the triclinic centrosymmetric space group and this drug is practically planar, since the least-squares methyl benzimidazolylcarbamate plane is much fitted on the forming atoms. However, the benzoyl group is twisted by 31(1)degrees from the benzimidazole ring, likewise the torsional angle between the benzene and carbonyl moieties is 27(1)degrees. The formerly described bends and other interesting intramolecular geometry features were viewed as consequence of the intermolecular contacts occurring within mebendazole C structure. Among these features, a conjugation decreasing through the imine nitrogen atom of the benzimidazole core and a further resonance path crossing the carbamate one were described. At last, the X-ray powder diffractogram of a form C rich mebendazole mixture was overlaid to the calculated one with the mebendazole crystal structure. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:2336-2344, 2009
Resumo:
This paper considers the issue of modeling fractional data observed on [0,1), (0,1] or [0,1]. Mixed continuous-discrete distributions are proposed. The beta distribution is used to describe the continuous component of the model since its density can have quite different shapes depending on the values of the two parameters that index the distribution. Properties of the proposed distributions are examined. Also, estimation based on maximum likelihood and conditional moments is discussed. Finally, practical applications that employ real data are presented.
Resumo:
In this article, we study some results related to a specific class of distributions, called skew-curved-symmetric family of distributions that depends on a parameter controlling the skewness and kurtosis at the same time. Special elements of this family which are studied include symmetric and well-known asymmetric distributions. General results are given for the score function and the observed information matrix. It is shown that the observed information matrix is always singular for some special cases. We illustrate the flexibility of this class of distributions with an application to a real dataset on characteristics of Australian athletes.
Resumo:
In this paper a new approach is considered for studying the triangular distribution using the theoretical development behind Skew distributions. Triangular distribution are obtained by a reparametrization of usual triangular distribution. Main probabilistic properties of the distribution are studied, including moments, asymmetry and kurtosis coefficients, and an stochastic representation, which provides a simple and efficient method for generating random variables. Moments estimation is also implemented. Finally, a simulation study is conducted to illustrate the behavior of the estimation approach proposed.
Resumo:
The Birnbaum-Saunders (BS) model is a positively skewed statistical distribution that has received great attention in recent decades. A generalized version of this model was derived based on symmetrical distributions in the real line named the generalized BS (GBS) distribution. The R package named gbs was developed to analyze data from GBS models. This package contains probabilistic and reliability indicators and random number generators from GBS distributions. Parameter estimates for censored and uncensored data can also be obtained by means of likelihood methods from the gbs package. Goodness-of-fit and diagnostic methods were also implemented in this package in order to check the suitability of the GBS models. in this article, the capabilities and features of the gbs package are illustrated by using simulated and real data sets. Shape and reliability analyses for GBS models are presented. A simulation study for evaluating the quality and sensitivity of the estimation method developed in the package is provided and discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Grubbs` measurement model is frequently used to compare several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations, whereas scale mixtures of normal distributions have been an interesting alternative to produce robust estimates, keeping the elegancy and simplicity of the maximum likelihood theory. The aim of this paper is to develop an EM-type algorithm for the parameter estimation, and to use the local influence method to assess the robustness aspects of these parameter estimates under some usual perturbation schemes, In order to identify outliers and to criticize the model building we use the local influence procedure in a Study to compare the precision of several thermocouples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Consider a continuous-time Markov process with transition rates matrix Q in the state space Lambda boolean OR {0}. In In the associated Fleming-Viot process N particles evolve independently in A with transition rates matrix Q until one of them attempts to jump to state 0. At this moment the particle jumps to one of the positions of the other particles, chosen uniformly at random. When Lambda is finite, we show that the empirical distribution of the particles at a fixed time converges as N -> infinity to the distribution of a single particle at the same time conditioned on not touching {0}. Furthermore, the empirical profile of the unique invariant measure for the Fleming-Viot process with N particles converges as N -> infinity to the unique quasistationary distribution of the one-particle motion. A key element of the approach is to show that the two-particle correlations are of order 1/N.
Resumo:
In this article, we study a new class of non negative distributions generated by the symmetric distributions around zero. For the special case of the distribution generated using the normal distribution, properties like moments generating function, stochastic representation, reliability connections, and inference aspects using methods of moments and maximum likelihood are studied. Moreover, a real data set is analyzed, illustrating the fact that good fits can result.
Resumo:
The generalized Birnbaum-Saunders (GBS) distribution is a new class of positively skewed models with lighter and heavier tails than the traditional Birnbaum-Saunders (BS) distribution, which is largely applied to study lifetimes. However, the theoretical argument and the interesting properties of the GBS model have made its application possible beyond the lifetime analysis. The aim of this paper is to present the GBS distribution as a useful model for describing pollution data and deriving its positive and negative moments. Based on these moments, we develop estimation and goodness-of-fit methods. Also, some properties of the proposed estimators useful for developing asymptotic inference are presented. Finally, an application with real data from Environmental Sciences is given to illustrate the methodology developed. This example shows that the empirical fit of the GBS distribution to the data is very good. Thus, the GBS model is appropriate for describing air pollutant concentration data, which produces better results than the lognormal model when the administrative target is determined for abating air pollution. Copyright (c) 2007 John Wiley & Sons, Ltd.