43 resultados para ELECTRON-PARAMAGNETIC-RES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermoluminescence (TL) peak in natural sodalite near 230 degrees C which appears only after submitted to thermal treatments and to gamma irradiation has been studied in parallel with electron paramagnetic resonance (EPR) spectrum appearing under the same procedure This study revealed a full correlation between the 230 degrees C TL peak and the eleven hyperfine lines from EPR spectrum In both case the centers disappear at the same temperature and are restored after gamma irradiation A complete model for the 230 C TL peak is presented and discussed In addition to the correlation and TL model specific characteristics of the TL peaks are described (C) 2010 Elsevier B V All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CaYAl(3)O(7):Eu(3+) phosphor was prepared at furnace temperatures as low as 550A degrees C by a solution combustion method. The formation of crystalline CaYAl(3)O(7):Eu(3+) was confirmed by powder X-Ray diffraction pattern. The prepared phosphor was characterized by SEM, FT-IR and photoluminescence techniques. Photoluminescence measurements indicated that emission spectrum is dominated by the red peak located at 618 nm due to the (5)D(0)-(7)F(2) electric dipole transition of Eu(3+) ions. Electron Spin Resonance (ESR) studies were carried out to identify the centres responsible for the thermoluminescence (TL) peaks. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0126 is identified as an O(-) ion while centre II with an isotropic g-factor 2.0060 is assigned to an F(+) centre (singly ionized oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F(+) centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F(+) centre appears to correlate with the observed high temperature TL peak in CaYAl(3)O(7):Eu(3+) phosphor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

110 degrees C thermoluminescence (TL) peak in quartz is well known due to its pre-dose effect, which is used in dating technique. The generally accepted mechanism for the production of this peak is based on Ge impurity contained in quartz. Its role is to substitute for Si in SiO(4) tetrahedron and under irradiation gives rise to [GeO(4)/e(-)](-) electron centre. Heating for TL read out liberates electron that recombines with hole in [AlO(4)/h]degrees or [H(3)O(4)/h]degrees centres emitting photon. The investigation, carried out on blue quartz, green quartz, black quartz, pink quartz, red quartz, sulphurous quartz, milky quartz, alpha quartz and synthetic quartz, has shown that the 110 degrees C TL peak in all these varieties of quartz has no correlation with the respective Ge content. Electron paramagnetic resonance (EPR) measurements on any of these varieties of quartz revealed a signal with g(1) = 2.0004, g(2) = 1.9986 and g(3) = 1.974 and this signal does not appear to correspond to any known EPR signals in alpha quartz. Furthermore, isothermal decay measurements are carried out on the above mentioned EPR signal and 110 degrees C TL peak in alpha, blue and green quartz. A close correlation has been observed in the decay behavior. A new mechanism is proposed based on an interstitial O(-) centre. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ancient potteries usually are made of the local clay material, which contains relatively high concentration of iron. The powdered samples are usually quite black, due to magnetite, and, although they can be used for thermoluminescene (TL) dating, it is easiest to obtain better TL reading when clearest natural or pre-treated sample is used. For electron paramagnetic resonance (EPR) measurements, the huge signal due to iron spin-spin interaction, promotes an intense interference overlapping any other signal in this range. Sample dating is obtained by dividing the radiation dose, determined by the concentration of paramagnetic species generated by irradiation, by the natural dose so as a consequence, EPR dating cannot be used, since iron signal do not depend on radiation dose. In some cases, the density separation method using hydrated solution of sodium polytungstate [Na(G)(H(2)W(12)O(40))center dot H(2)O] becomes useful. However, the sodium polytungstate is very expensive in Brazil: hence an alternative method for eliminating this interference is proposed. A chemical process to eliminate about 90% of magnetite was developed. A sample of powdered ancient pottery was treated in a mixture (3:1:1) of HCI, HNO(3) and H(2)O(2) for 4 h. After that, it was washed several times in distilled water to remove all acid matrixes. The original black sample becomes somewhat clearer. The resulting material was analyzed by plasma mass spectrometry (ICP-MS), with the result that the iron content is reduced by a factor of about 9. In EPR measurements a non-treated natural ceramic sample shows a broad spin-spin interaction signal, the chemically treated sample presents a narrow signal in g= 2.00 region, possibly due to a radical of (SiO(3))(3-), mixed with signal of remaining iron [M. lkeya, New Applications of Electron Spin Resonance, World Scientific, Singapore, 1993, p. 285]. This signal increases in intensity under -gamma-irradiation. However, still due to iron influence, the additive method yielded too old age-value. Since annealing at 300 degrees C, Toyoda and Ikeya IS. Toyoda, M. Ikeya, Geochem. J. 25 (1991) 427-445] states that E `(1)-signal with maximum intensity is obtained, while annealing at 400 degrees C E`(1)-signal is completely eliminated, the subtraction of the second one from 300 degrees C heat-treated sample isolate E`(1)-like signal. Since this is radiation dose-dependent, we show that now EPR dating becomes possible. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diopside, a natural silicate mineral of formula CaMgSi2O6, has been investigated concerning its thermoluminescence (TL) and electron paramagnetic resonance (EPR) properties. Glow curves and TL vs. gamma-dose were obtained irradiating natural samples to additional dose varying from 50 to 10,000Gy. Except for a 410 degrees C peak found in the Al-doped artificial diopside, all the other peaks grow linearly with radiation dose, but saturate beyond -1 kGy. To investigate high-temperature effect before irradiation, measurements of TL intensity in samples annealed at 500-900 degrees C and then irradiated to I kGy gamma-dose were carried out. Also the TL emission spectrum has been obtained. To compare with natural diopside, a synthetic pure polycrystal was produced and further those doped with iron, aluminum and manganese were also produced. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, KHSO(4):Mn crystals doped with Mn and K(2)SO(4) were synthesized using an aqueous solution method. The samples were exposed to ionizing radiation in order to observe the effects on their physical properties. Raman spectroscopy was used to identify the structure of the crystals by detecting the vibrational frequencies of the crystalline lattice. Electron paramagnetic resonance (EPR) was used to study the creation of paramagnetic centers arising from exposure to ionizing radiation. This new synthesis method produces high quality K(2)SO(4) and KHSO(4):Mn crystals and allows control of structural, morphological, optical and magnetic properties. (C) 2009 Elsevier B.V. All rights reserved,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evidence of successful growth of Mn-doped PbS (Pb(1-x)Mn(x)S) nanocrystals (NCs) in SiO(2)-Na(2)CO(3)-Al(2)O(3)-PbO(2)-B(2)O(3) template, using the fusion method, is reported on in this study. The as-grown Pb(1-x)Mn(x)S NC is characterized using optical absorption, electron paramagnetic resonance, and atomic force microscopy. The data are discussed in terms of two distinct scenarios, namely a core-doped and a shell-doped nanostructure. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Li(2)O-B(2)O(3)-Al(2)O(3) glass system, un-doped and doped with LiF, and/or TiO(2) was synthesized by the fusion method and its physical properties were investigated by thermoluminescence (TL), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), atomic force microscopy (AFM) and differential thermal analysis (DTA). The samples were subjected to gamma-rays from a colbalt-60 ((60)Co) source. These techniques provided evidence of LiF and LiF doped with Ti crystal formation in the glass system. A TL glow peak at about 433 K was sensitive to (60)Co gamma-rays and showed good linearity with doses and consequently could be used to quantify radiation doses. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work report results from proton nuclear magnetic resonance (NMR), continuous-wave (CW-EPR) and pulsed electron paramagnetic resonance (P-EPR) and complex impedance spectroscopy of gelatin-based polymer gel electrolytes containing acetic acid. cross-linked with formaldehyde and plasticized with glycerol. Ionic conductivity of 2 x 10(-5) S/cm was obtained at room temperature for samples prepared with 33 wt% of acetic acid. Proton ((1)H) line shapes and spin-lattice relaxation times were measured as a function of temperature. The NMR results show that the proton mobility is dependent on acetic acid content in the plasticized polymer gel electrolytes. The CW-EPR spectra, which were carried out in samples doped with copper perchlorate, indicate the presence of the paramagnetic Cu(2+) ions in axially distorted sites. The P-EPR technique, known as electron spin echo envelope modulation (ESEEM), was employed to show the involvement of both, hydrogen and nitrogen atoms, in the copper complexation of the gel electrolyte. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present a study about the influence of the porphyrin metal center and mesa ligands on the biological effects of meso-tetrakis porphyrins. Different from the cationic meso-tetrakis 4-N-methyl pyridinium (Mn(III)TMPyP), the anionic Mn(III) meso-tetrakis (para-sulfonatophenyl) porphyrin (Mn(III)TPPS4) exhibited no protector effect against Fe(citrate)-induced lipid oxidation. Mn(III)TPPS4 did not protect mitochondria against endogenous hydrogen peroxide and only delayed the swelling caused by tert-BuOOH and Ca(2+). Fe(III)TPPS4 exacerbated the effect of the tert-BuOOH, and both porphyrins did not significantly affect Fe(II)citrate-induced swelling. Consistently, Fe(III)TPPS4 predominantly promotes the homolytic cleavage of peroxides and exhibits catalytic efficiency ten-fold higher than Mn(III)TPPS4. For Mn(III)TPPS4, the microenvironment of rat liver mitochondria favors the heterolytic cleavage of peroxides and increases the catalytic efficiency of the manganese porphyrin due to the availability of axial ligands for the metal center and reducing agents such as glutathione (GSH) and proteins necessary for Compound II (oxomanganese IV) recycling to the initial Mn(III) form. The use of thiol reducing agents for the recycling of Mn(III)TPPS4 leads to GSH depletion and protein oxidation and consequent damages in the organelle. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthesis, characterization, crystal structure, and biological studies of two complexes with glycolic acid are described. The solid complexes were formulated as K2[VO(C2H2O3)(C2H3O3)2] H2O (1) and K2[{VO2(C2H2O3)}2] (2) and characterized by X-ray studies, Fourier transform infrared spectroscopy (FTIR), Electron paramagnetic resonance (EPR), and magnetic susceptibility. Conversion of 1 to 2 was studied in aqueous solution by UV-Vis spectroscopy and in the solid state by diffuse reflectance spectroscopy. Complex 2 contains dinuclear [{VO2(C2H2O3)}2]2- anions in which glycolate(2-) is a five-membered chelating ring formed by carboxylate and -hydroxy groups. The geometry around the vanadium in 2 was interpreted as intermediate between a trigonal bipyramid and a square pyramid. Vanadium(IV) is pentacoordinate in 1 as a distorted square pyramid. Complex 1 contains a vanadyl group (V=O) surrounded by two oxygens from deprotonated carboxylate and hydroxy groups forming a five-membered ring. Two oxygens from different glycolates(1-) are bonded to the (V=O) also. Biological analysis for potential cytotoxic effects of 1 was performed using Human Cervix Adenocarcinoma (HeLa) cells, a human cervix adenocarcinoma-derived cell line. After incubation for 48 h, 1 causes 90 and 95% of HeLa cells death at 20 and 200 mol L-1, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we report results from continuous-wave (CW) and pulsed electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance (NMR) studies of the vanadium pentoxide xerogel V2O5:nH(2)O (n approximate to 1.6). The low temperature CW-EPR spectrum shows hyperfine structure due to coupling of unpaired V4+ electron with the vanadium nucleus. The analysis of the spin Hamiltonian parameters suggests that the V4+ ions are located in tetragonally distorted octahedral sites. The transition temperature from the rigid-lattice low-temperature regime to the high temperature liquid-like regime was determined from the analysis of the temperature dependence of the hyperfine splitting and the V4+ motional correlation time. The Electron Spin Echo Envelope Modulation (ESEEM) data shows the signals resulting from the interaction of H-1 nuclei with V4+ ions. The modulation effect was observed only for field values in the center of the EPR absorption spectrum corresponding to the single crystals orientated perpendicular to the magnetic field direction. At least three protons are identified in the xerogel by our magnetic resonance experiments: (I) the OH groups in the equatorial plane, (ii) the bound water molecules in the axial V=O bond and (iii) the free mobile water molecules between the oxide layers. Proton NMR lineshapes and spin-lattice relaxation times were measured in the temperature range between 150 K and 323 K. Our analysis indicates that only a fraction of the xerogel protons contribute to the measured conductivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Statins have pleiotropic effects, including endothelial nitric oxide synthase (eNOS) upregulation and increased nitric oxide formation, which can be modulated by a genetic polymorphism in the promoter region of the eNOS gene (T-786C). Here, we report our investigation of whether this polymorphism modulates the effects of atorvastatin on the fluidity of erythrocyte membranes. We genotyped 200 healthy subjects (males, 18-60 years of age) and then randomly selected 15 of these with the TT genotype and 15 with the CC genotype to receive placebo or atorvastatin (10 mg/day oral administration) for 14 days. Cell membrane fluidity was evaluated by electron paramagnetic resonance (EPR) and spin-labeling method. The EPR spectra were registered on a VARIAN-E4 spectrometer. Thiobarbituric acid-reactive species (TBA-RS) and plasma membrane cholesterol were determined in the erythrocytes. Atorvastatin reduced membrane fluidity in CC subjects (P < 0.05) but not in those with the TT genotype (P > 0.05). While no significant differences were found in plasma membrane cholesterol concentrations, higher TBA-RS concentrations were found in the CC subjects than in the TT subjects (P < 0.05). These findings suggest that a short treatment with atorvastatin is disadvantageous to subjects with the CC genotype for the T-786C polymorphism compared to those with TT genotype, at least in terms of the hemorheological properties of erythrocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Angiotensin II (Ang II) and its transmembrane AT(1) receptor were selected in order to test an innovative strategy that might allow the assessment of the agonist binding site in the receptor molecule. With the use of the 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) paramagnetic probe, a biologically active agonist (TOAC(1)-Ang II), as well as an inactive control (TOAC(4)-Ang II) analogs were mixed in solution with various synthesized AT(1) fragments. Comparative intermolecular interactions, as estimated by analyzing the EPR spectra of solutions, suggested the existence of an agonist binding site containing a sequence composed of portions of the N-terminal (13-17) and the third extracellular loop (266-278) fragments of the AT(1) molecule. Therefore, this combined EPR-TOAC approach shows promise as an alternative for use also in other applications related to specific intermolecular association processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The various stages of the interaction between the detergent Triton X-100 (TTX-100) and membranes of whole red blood cells (RBC) were investigated in a broad range of detergent concentrations. The interaction was monitored by RBC hemolysis-assessed by release of intracellular hemoglobin (Hb) and inorganic phosphate- and by analysis of EPR spectra of a fatty acid spin probe intercalated in whole RBC suspensions, as well as pellets and supernatants obtained upon centrifugation of detergent-treated cells. Hemolysis finished at ca. 0.9 mM TTX-100. Spectral analysis and calculation of order parameters (S) indicated that a complex sequence of events takes place, and allowed the characterization of various structures formed in the different stages of detergent-membrane interaction. Upon reaching the end of cell lysis, essentially no pellet was detected, the remaining EPR signal being found almost entirely in the supernatants. Calculated order parameters revealed that whole RBC suspensions, pellets, and supernatants possessed a similar degree of molecular packing, which decreased to a small extent up to 2.5 mM detergent. Between 3.2 and 10 mM TTX-100, a steep decrease in S was observed for both whole RBC suspensions and supernatants. Above 10 mM detergent, S decreased in a less pronounced manner and the EPR spectra approached that of pure TTX-100 micelles. The data were interpreted in terms of the following events: at the lower detergent concentrations, an increase in membrane permeability occurs: the end of hemolysis coincides with the lack of pellet upon centrifugation. Up to 2.5 mM TTX-100 the supernatants consist of a (very likely) heterogeneous population of membrane fragments with molecular packing similar to that of whole cells. As the detergent concentration increases, mixed micelles are formed containing lipid and/or protein, approaching the packing found in pure TTX-100 micelles. This analysis is in agreement with the models proposed by Lasch (Biochim. Biophys Acta 1241 (1995) 269-292) and by Le Maire and coworkers (Biochim. Biophys. Acta 1508 (2000) 86-111). (C) 2010 Elsevier B.V. All rights reserved.