35 resultados para ELECTRON-PARAMAGNETIC-RES
em CaltechTHESIS
Resumo:
This work is divided into two independent papers.
PAPER 1.
Spall velocities were measured for nine experimental impacts into San Marcos gabbro targets. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles were iron, aluminum, lead, and basalt of varying sizes. The projectile masses ranged from a 4 g lead bullet to a 0.04 g aluminum sphere. The velocities of fragments were measured from high-speed films taken of the events. The maximum spall velocity observed was 30 m/sec, or 0.56 percent of the 5.4 km/sec impact velocity. The measured velocities were compared to the spall velocities predicted by the spallation model of Melosh (1984). The compatibility between the spallation model for large planetary impacts and the results of these small scale experiments are considered in detail.
The targets were also bisected to observe the pattern of internal fractures. A series of fractures were observed, whose location coincided with the boundary between rock subjected to the peak shock compression and a theoretical "near surface zone" predicted by the spallation model. Thus, between this boundary and the free surface, the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.
PAPER 2.
Carbonate samples from the nuclear explosion crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron para- magnetic resonance, EPR. The first series of samples for OAK Crater were obtained from six boreholes within the crater, and the second series were ejecta samples recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to spectra of Solenhofen limestone, which had been shocked to known pressures.
The results of the OAK borehole analysis have identified a thin zone of highly shocked carbonate material underneath the crater floor. This zone has a maximum depth of approximately 200 ft below sea floor at the ground zero borehole and decreases in depth towards the crater rim. A layer of highly shocked material is also found on the surface in the vicinity of the reference bolehole, located outside the crater. This material could represent a fallout layer. The ejecta samples have experienced a range of shock pressures.
It was also demonstrated that the EPR technique is feasible for the study of terrestrial impact craters formed in carbonate bedrock. The results for the Meteor Crater analysis suggest a slight degree of shock damage present in the β member of the Kaibab Formation exposed in the crater walls.
Resumo:
Part I. Proton Magnetic Resonance of Polynucleotides and Transfer RNA.
Proton magnetic resonance was used to follow the temperature dependent intramolecular stacking of the bases in the polynucleotides of adenine and cytosine. Analysis of the results on the basis of a two state stacked-unstacked model yielded values of -4.5 kcal/mole and -9.5 kcal/mole for the enthalpies of stacking in polyadenylic and polycytidylic acid, respectively.
The interaction of purine with these molecules was also studied by pmr. Analysis of these results and the comparison of the thermal unstacking of polynucleotides and short chain nucleotides indicates that the bases contained in stacks within the long chain poly nucleotides are, on the average, closer together than the bases contained in stacks in the short chain nucleotides.
Temperature and purine studies were also carried out with an aqueous solution of formylmethionine transfer ribonucleic acid. Comparison of these results with the results of similar experiments with the homopolynucleotides of adenine, cytosine and uracil indicate that the purine is probably intercalating into loop regions of the molecule.
The solvent denaturation of phenylalanine transfer ribonucleic acid was followed by pmr. In a solvent mixture containing 83 volume per cent dimethylsulf oxide and 17 per cent deuterium oxide, the tRNA molecule is rendered quite flexible. It is possible to resolve resonances of protons on the common bases and on certain modified bases.
Part II. Electron Spin Relaxation Studies of Manganese (II) Complexes in Acetonitrile.
The electron paramagnetic resonance spectra of three Mn+2 complexes, [Mn(CH3CN)6]+2, [MnCl4]-2, and [MnBr4]-2, in acetonitrile were studied in detail. The objective of this study was to relate changes in the effective spin Hamiltonian parameters and the resonance line widths to the structure of these molecular complexes as well as to dynamical processes in solution.
Of the three systems studied, the results obtained from the [Mn(CH3CN)6]+2 system were the most straight-forward to interpret. Resonance broadening attributable to manganese spin-spin dipolar interactions was observed as the manganese concentration was increased.
In the [MnCl4]-2 system, solvent fluctuations and dynamical ion-pairing appear to be significant in determining electron spin relaxation.
In the [MnBr4]-2 system, solvent fluctuations, ion-pairing, and Br- ligand exchange provide the principal means of electron spin relaxation. It was also found that the spin relaxation in this system is dependent upon the field strength and is directly related to the manganese concentration. A relaxation theory based on a two state collisional model was developed to account for the observed behavior.
Resumo:
This thesis summarizes the application of conventional and modern electron paramagnetic resonance (EPR) techniques to establish proximity relationships between paramagnetic metal centers in metalloproteins and between metal centers and magnetic ligand nuclei in two important and timely membrane proteins: succinate:ubiquinone oxidoreductase (SQR) from Paracoccus denitrificans and particulate methane monooxygenase (pMMO) from Methylococcus capsulatus. Such proximity relationships are thought to be critical to the biological function and the associated biochemistry mediated by the metal centers in these proteins. A mechanistic understanding of biological function relies heavily on structure-function relationships and the knowledge of how molecular structure and electronic properties of the metal centers influence the reactivity in metalloenzymes. EPR spectroscopy has proven to be one of the most powerful techniques towards obtaining information about interactions between metal centers as well as defining ligand structures. SQR is an electron transport enzyme wherein the substrates, organic and metallic cofactors are held relatively far apart. Here, the proximity relationships of the metallic cofactors were studied through their weak spin-spin interactions by means of EPR power saturation and electron spin-lattice (T_1) measurements, when the enzyme was poised at designated reduction levels. Analysis of the electron T_1 measurements for the S-3 center when the b-heme is paramagnetic led to a detailed analysis of the dipolar interactions and distance determination between two interacting metal centers. Studies of ligand environment of the metal centers by electron spin echo envelope modulation (ESEEM) spectroscopy resulted in the identication of peptide nitrogens as coupled nuclei in the environment of the S-1 and S-3 centers.
Finally, an EPR model was developed to describe the ferromagnetically coupled trinuclear copper clusters in pMMO when the enzyme is oxidized. The Cu(II) ions in these clusters appear to be strongly exchange coupled, and the EPR is consistent with equilateral triangular arrangements of type 2 copper ions. These results offer the first glimpse of the magneto-structural correlations for a trinuclear copper cluster of this type, which, until the work on pMMO, has had no precedent in the metalloprotein literature. Such trinuclear copper clusters are even rare in synthetic models.
Resumo:
A new approach to magnetic resonance was introduced in 1992 based upon detection of spin-induced forces by J. Sidles [1]. This technique, now called magnetic resonance force microscopy (MRFM), was first demonstrated that same year via electron paramagnetic resonance (EPR) by D. Rugar et al. [2]. This new method combines principles of magnetic resonance with those of scanned probe technology to detect spin resonance through mechanical, rather than inductive, means. In this thesis the development and use of ferromagnetic resonance force microscopy (FMRFM) is described. This variant of MRFM, which allows investigation of ferromagnetic samples, was first demonstrated in 1996 by Z. Zhang et al. [3]. FMRFM enables characterization of (a) the dynamic magnetic properties of microscale magnetic devices, and (b) the spatial dependence of ferromagnetic resonance within a sample. Both are impossible with conventional ferromagnetic resonance techniques.
Ferromagnetically coupled systems, however, pose unique challenges for force detection. In this thesis the attainable spatial resolution - and the underlying physical mechanisms that determine it - are established. We analyze the dependence of the magnetostatic modes upon sample dimensions using a series of microscale yttrium iron garnet (YIG) samples. Mapping of mode amplitudes within these sample is attained with an unprecedented spatial resolution of 15μm. The modes, never before analyzed on this scale, fit simple models developed in this thesis for samples of micron dimensions. The application of stronger gradient fields induces localized perturbation of the ferromagnetic resonance modes. The first demonstrations of this effect are presented in this study, and a simple theoretical model is developed to explain our observations. The results indicate that the characteristics of the locally-detected ferromagnetic modes are still largely determined by the external fields and dimensions of the entire sample, rather than by the localized interaction volume (i.e., the locale most strongly affected by the local gradient field). Establishing this is a crucial first step toward understanding FMRFM in the high gradient field limit where the dispersion relations become locally determined. In this high gradient field regime, FMRFM imaging becomes analogous with that of EPR MRFM.
FMRFM has also been employed to characterize magnetic multilayers, similar to those utilized in giant magnetoresistance (GMR) devices, on a lateral scale 40 x 40μm. This is orders of magnitude smaller than possible via conventional methods. Anisotropy energies, thickness, and interface qualities of individual layers have been resolved.
This initial work clearly demonstrates the immense and unique potential that FMRFM offers for characterizing advanced magnetic nanostructures and magnetic devices.
Resumo:
This dissertation is mainly divided into two sub-parts: organometallic and bioinorganic/materials projects. The approach for the projects involves the use of two different multinucleating ligands to synthesize mono- and multinuclear complexes. Chapter 2 describes the synthesis of a multinucleating tris(phosphinoaryl)benzene ligand used to support mono-nickel and palladium complexes. The isolated mononuclear complexes were observed to undergo intramolecular arene C¬–H to C–P functionalization. The transformation was studied by nuclear magnetic resonance spectroscopy and X-ray crystallography, and represents a rare type of C–H functionalization mechanism, facilitated by the interactions of the group 10 metal with the arene π–system.
Chapter 3 describes the construction of multinickel complexes supported by the same triphosphine ligand from Chapter 2. This chapter shows how the central arene in the ligand’s triarylbenzene framework can interact with dinickel and trinickel moieties in various binding modes. X-ray diffraction studies indicated that all compounds display strong metal–arene interactions. A cofacial triangulo nickel(0) complex supported by this ligand scaffold was also isolated and characterized. This chapter demonstrates the use of an arene as versatile ligand design element for small molecular clusters.
Chapter 4 presents the syntheses of a series of discrete mixed transition metal Mn oxido clusters and their characterization. The synthesis of these oxide clusters displaying two types of transition metals were targeted for systematic metal composition-property studies relevant to mixed transition metal oxides employed in electrocatalysis. A series of heterometallic trimanganese tetraoxido cubanes capped with a redox-active metal [MMn3O4] (M = Fe, Co, Ni, Cu) was synthesized starting from a [CaMn3O4] precursor and structurally characterized by X-ray crystallography and anomalous diffraction to conclusively determine that M is incorporated at a single position in the cluster. The electrochemical properties of these complexes were studied via cyclic voltammetry. The redox chemistry of the series of complexes was investigated by the addition of a reductant and oxidant. X-ray absorption and electron paramagnetic resonance spectroscopies were also employed to evaluate the product of the oxidation/reduction reaction to determine the site of electron transfer given the presence of two types of redox-active metals. Additional studies on oxygen atom transfer reactivities of [MMn3O4] and [MMn3O2] series were performed to investigate the effect of the heterometal M in the reaction rates.
Chapter 5 focuses on the use of [CoMn3O4] and [NiMn3O4] cubane complexes discussed in Chapter 4 as precursors to heterogeneous oxygen evolution reaction (OER) electrocatalysts. These well-defined complexes were dropcasted on electrodes with/without heat treatment, and the OER activities of the resulting films were evaluated. Multiple spectroscopic techniques were performed on the surface of the electrocatalysts to gain insight into the structure-function relationships based on the heterometallic composition. Depending on film preparation, the Co-Mn-oxide was found to change metal composition during catalysis, while the Ni-Mn oxide maintained the NiMn3 ratio. These studies represent the use of discrete heterometallic-oxide clusters as precursors for heterogeneous water oxidation catalysts.
Appendix A describes the ongoing effort to synthesize a series of heteromultimetallic [MMn3X] clusters (X = O, S, F). Complexes such as [ZnMn3O], [CoMn3O], [Mn3S], and [Mn4F] have been synthesized and structurally characterized. An amino-bis-oxime ligand (PRABO) has been installed on the [ZnMn3O] cluster. Upon the addition of O2, the desymmetrized [ZnMn3O] cluster only underwent an outer-sphere, one-electron oxidation. Efforts to build and manipulate other heterometallic [MMn3X] clusters are still ongoing, targeting O2 binding and reduction. Appendix B summarizes the multiple synthetic approaches to build a [Co4O4]-cubane complex relevant to heterogeneous OER electrocatalysis. Starting with the tricobalt cluster [LCo3(O2CR)3] and treatment various strong oxidants that can serve as oxygen atom source in the presence Co2+ salt only yielded tricobalt mono–oxo complexes. Appendix C presents the efforts to model the H-cluster framework of [FeFe]-hydrogenase by incorporating a synthetic diiron complex onto a protein-supported or a synthetic ligand-supported [Fe4S4]-cluster. The mutant ferredoxin with a [Fe4S4]-cluster and triscarbene ligand have been characterized by multiple spectroscopic techniques. The reconstruction of an H-cluster mimic has not yet been achieved, due to the difficulty of obtaining crystallographic evidence and the ambiguity of the EPR results.
Resumo:
DNA possesses the curious ability to conduct charge longitudinally through the π-stacked base pairs that reside within the interior of the double helix. The rate of charge transport (CT) through DNA has a shallow distance dependence. DNA CT can occur over at least 34 nm, a very long molecular distance. Lastly, DNA CT is exquisitely sensitive to disruptions, such as DNA damage, that affect the dynamics of base-pair stacking. Many DNA repair and DNA-processing enzymes are being found to contain 4Fe-4S clusters. These co-factors have been found in glycosylases, helicases, helicase-nucleases, and even enzymes such as DNA polymerase, RNA polymerase, and primase across the phylogeny. The role of these clusters in these enzymes has remained elusive. Generally, iron-sulfur clusters serve redox roles in nature since, formally, the cluster can exist in multiple oxidation states that can be accessed within a biological context. Taken together, these facts were used as a foundation for the hypothesis that DNA-binding proteins with 4Fe-4S clusters utilize DNA-mediated CT as a means to signal one another to scan the genome as a first step in locating the subtle damage that occurs within a sea of undamaged bases within cells.
Herein we describe a role for 4Fe-4S clusters in DNA-mediated charge transport signaling among EndoIII, MutY, and DinG, which are from distinct repair pathways in E. coli. The DinG helicase is an ATP-dependent helicase that contains a 4Fe-4S cluster. To study the DNA-bound redox properties of DinG, DNA-modified electrochemistry was used to show that the 4Fe-4S cluster of DNA-bound DinG is redox-active at cellular potentials, and shares the 80 mV vs. NHE redox potential of EndoIII and MutY. ATP hydrolysis by DinG increases the DNA-mediated redox signal observed electrochemically, likely reflecting better coupling of the 4Fe-4S cluster to DNA while DinG unwinds DNA, which could have interesting biological implications. Atomic force microscopy experiments demonstrate that DinG and EndoIII cooperate at long range using DNA charge transport to redistribute to regions of DNA damage. Genetics experiments, moreover, reveal that this DNA-mediated signaling among proteins also occurs within the cell and, remarkably, is required for cellular viability under conditions of stress. Knocking out DinG in CC104 cells leads to a decrease in MutY activity that is rescued by EndoIII D138A, but not EndoIII Y82A. DinG, thus, appears to help MutY find its substrate using DNA-mediated CT, but do MutY or EndoIII aid DinG in a similar way? The InvA strain of bacteria was used to observe DinG activity, since DinG activity is required within InvA to maintain normal growth. Silencing the gene encoding EndoIII in InvA results in a significant growth defect that is rescued by the overexpression of RNAseH, a protein that dismantles the substrate of DinG, R-loops. This establishes signaling between DinG and EndoIII. Furthermore, rescue of this growth defect by the expression of EndoIII D138A, the catalytically inactive but CT-proficient mutant of EndoIII, is also observed, but expression of EndoIII Y82A, which is CT-deficient but enzymatically active, does not rescue growth. These results provide strong evidence that DinG and EndoIII utilize DNA-mediated signaling to process DNA damage. This work thus expands the scope of DNA-mediated signaling within the cell, as it indicates that DNA-mediated signaling facilitates the activities of DNA repair enzymes across the genome, even for proteins from distinct repair pathways.
In separate work presented here, it is shown that the UvrC protein from E. coli contains a hitherto undiscovered 4Fe-4S cluster. A broad shoulder at 410 nm, characteristic of 4Fe-4S clusters, is observed in the UV-visible absorbance spectrum of UvrC. Electron paramagnetic resonance spectroscopy of UvrC incubated with sodium dithionite, reveals a spectrum with the signature features of a reduced, [4Fe-4S]+1, cluster. DNA-modified electrodes were used to show that UvrC has the same DNA-bound redox potential, of ~80 mV vs. NHE, as EndoIII, DinG, and MutY. Again, this means that these proteins are capable of performing inter-protein electron transfer reactions. Does UvrC use DNA-mediated signaling to facilitate the repair of its substrates?
UvrC is part of the nucleotide excision repair (NER) pathway in E. coli and is the protein within the pathway that performs the chemistry required to repair bulky DNA lesions, such as cyclopyrimidine dimers, that form as a product of UV irradiation. We tested if UvrC utilizes DNA-mediated signaling to facilitate the efficient repair of UV-induced DNA damage products by helping UvrC locate DNA damage. The UV sensitivity of E. coli cells lacking DinG, a putative signaling partner of UvrC, was examined. Knocking out DinG in E. coli leads to a sensitivity of the cells to UV irradiation. A 5-10 fold reduction in the amount of cells that survive after irradiation with 90 J/m2 of UV light is observed. This is consistent with the hypothesis that UvrC and DinG are signaling partners, but is this signaling due to DNA-mediated CT? Complementing the knockout cells with EndoIII D138A, which can also serve as a DNA CT signaling partner, rescues cells lacking DinG from UV irradiation, while complementing the cells with EndoIII Y82A shows no rescue of viability. These results indicate that there is cross-talk between the NER pathway and DinG via DNA-mediated signaling. Perhaps more importantly, this work also establishes that DinG, EndoIII, MutY, and UvrC comprise a signaling network that seems to be unified by the ability of these proteins to perform long range DNA-mediated CT signaling via their 4Fe-4S clusters.
Resumo:
Magnetic resonance techniques have given us a powerful means for investigating dynamical processes in gases, liquids and solids. Dynamical effects manifest themselves in both resonance line shifts and linewidths, and, accordingly, require detailed analyses to extract desired information. The success of a magnetic resonance experiment depends critically on relaxation mechanisms to maintain thermal equilibrium between spin states. Consequently, there must be an interaction between the excited spin states and their immediate molecular environment which promote changes in spin orientation while excess magnetic energy is coupled into other degrees of freedom by non-radiative processes. This is well known as spin-lattice relaxation. Certain dynamical processes cause fluctuations in the spin state energy levels leading to spin-spin relaxation and, here again, the environment at the molecular level plays a significant role in the magnitude of interaction. Relatively few electron spin relaxation studies of solutions have been conducted and the present work is addressed toward the extension of our knowledge in this area and the retrieval of dynamical information from line shape analyses on a time scale comparable to diffusion controlled phenomena.
Specifically, the electron spin relaxation of three Mn+23d5 complexes, Mn(CH3CN)6+2, MnCl4-2 in acetonitrile has been studied in considerable detail. The effective spin Hamiltonian constants were carefully evaluated under a wide range of experimental conditions. Resonance widths of these Mn+2 complexes were studied in the presence of various excess ligand ions and as a function of concentration, viscosity, temperature and frequency (X-band, ~9.5 Ԍ Hz and K-band, ~35 Ԍ Hz).
A number of interesting conclusions were drawn from these studies. For the Et4NCl-4-2 system several relaxation mechanisms leading to resonance broadening were observed. One source appears to arise through spin-orbit interactions caused by modulation of the ligand field resulting from transient distortions of the complex imparted by solvent fluctuations in the immediate surroundings of the paramagnetic ion. An additional spin relaxation was assigned to the formation of ion pairs [Et4N+…MnCl4-2] and it was possible to estimate the dissociation constant for this specie in acetonitrile.
The Bu4NBr-MnBr4-2 study was considerably more interesting. As in the former case, solvent fluctuations and ion-pairing of the paramagnetic complex [Bu4N+…MnBr4-2] provide significant relaxation for the electronic spin system. Most interesting, without doubt, is the onset of a new relaxation mechanism leading to resonance broadening which is best interpreted as chemical exchange. Thus, assuming that resonance widths were simply governed by electron spin state lifetimes, we were able to extract dynamical information from an interaction in which the initial and final states are the same
MnBr4-2 + Br- = MnBr4-2 + Br-.
The bimolecular rate constants were obtained at six different temperatures and their magnitudes suggested that the exchange is probably diffusion controlled with essentially a zero energy of activation. The most important source of spin relaxation in this system stems directly from dipolar interactions between the manganese 3d5 electrons. Moreover, the dipolar broadening is strongly frequency dependent indicating a deviation between the transverse and longitudinal relaxation times. We are led to the conclusion that the 3d5 spin states of ion-paired MnBr4-2 are significantly correlated so that dynamical processes are also entering the picture. It was possible to estimate the correlation time, Td, characterizing this dynamical process.
In Part II we study nuclear magnetic relaxation of bromine ions in the MnBr4-2-Bu4NBr-acetonitrile system. Essentially we monitor the 79Br and 81Br linewidths in response to the [MnBr4-2]/[Br-] ratio with the express purpose of supporting our contention that exchange is occurring between "free" bromine ions in the solvent and bromine in the first coordination sphere of the paramagnetic anion. The complexity of the system elicited a two-part study: (1) the linewidth behavior of Bu4NBr in anhydrous CH3CN in the absence of MnBr4-2 and (2) in the presence of MnBr4-2. It was concluded in study (1) that dynamical association, Bu4NBr k1= Bu4N+ + Br-, was modulating field-gradient interactions at frequencies high enough to provide an estimation of the unimolecular rate constant, k1. A comparison of the two isotopic bromine linewidth-mole fraction results led to the conclusion that quadrupole interactions provided the dominant relaxation mechanism. In study (2) the "residual" bromine linewidths for both 79Br and 81Br are clearly controlled by quadrupole interactions which appear to be modulated by very rapid dynamical processes other than molecular reorientation. We conclude that the "residual" linewidth has its origin in chemical exchange and that bromine nuclei exchange rapidly between a "free" solvated ion and the paramagnetic complex, MnBr4-2.
Resumo:
We have applied the Schwinger Multichannel Method(SMC) to the study of electronically inelastic, low energy electron-molecule collisions. The focus of these studies has been the assessment of the importance of multichannel coupling to the dynamics of these excitation processes. It has transpired that the promising quality of results realized in early SMC work on such inelastic scattering processes has been far more difficult to obtain in these more sophisticated studies.
We have attempted to understand the sources of instability of the SMC method which are evident in these multichannel studies. Particular instances of such instability have been considered in detail, which indicate that linear dependence, failure of the separable potential approximation, and difficulties in converging matrix elements involving recorrelation or Q-space terms all conspire to complicate application of the SMC method to these studies. A method involving singular value decomposition(SVD) has been developed to, if not resolve these problems, at least mitigate their deleterious effects on the computation of electronically inelastic cross sections.
In conjunction with this SVD procedure, the SMC method has been applied to the study of the H_2 , H_2O, and N_2 molecules. Rydberg excitations of the first two molecules were found to be most sensitive to multichannel coupling near threshold. The (3σ_g → 1π_g ) and (1π_u → 1π_g) valence excitations of the N_2 molecule were found to be strongly influenced by the choice of channel coupling scheme at all collision energies considered in these studies.
Resumo:
Redox-active ruthenium complexes have been covalently attached to the surface of a series of natural, semisynthetic and recombinant cytochromes c. The protein derivatives were characterized by a variety of spectroscopic techniques. Distant Fe^(2+) - Ru^(3+) electronic couplings were extracted from intramolecular electron-transfer rates in Ru(bpy)_2(im)HisX (where X= 33, 39, 62, and 72) derivatives of cyt c. The couplings increase according to 62 (0.0060) < 72 (0.057) < 33 (0.097) < 39 (0.11 cm^(-1)); however, this order is incongruent with histidine to heme edge-edge distances [62 (14.8) > 39 (12.3) > 33 (11.1) > =72 (8.4 Å)]. These results suggest the chemical nature of the intervening medium needs to be considered for a more precise evaluation of couplings. The rates (and couplings) correlate with the lengths of a-tunneling pathways comprised of covalent bonds, hydrogen bonds and through-space jumps from the histidines to the heme group. Space jumps greatly decrease couplings: one from Pro71 to Met80 extends the σ-tunneling length of the His72 pathway by roughly 10 covalent bond units. Experimental couplings also correlate well with those calculated using extended Hiickel theory to evaluate the contribution of the intervening protein medium.
Two horse heart cyt c variants incorporating the unnatural amino acids (S)-2- amino-3-(2,2'-bipyrid-6-yl)-propanoic acid (6Bpa) and (S)-2-amino-3-(2,2'-bipyrid-4-yl)propanoic acid ( 4Bpa) at position 72 have been prepared using semisynthetic protocols. Negligible perturbation of the protein structure results from this introduction of unnatural amino acids. Redox-active Ru(2,2'-bipyridine)_2^(2+) binds to 4Bpa72 cyt c but not to the 6Bpa protein. Enhanced ET rates were observed in the Ru(bpy)_2^(2+)-modified 4Bpa72 cyt c relative to the analogous His72 derivative. The rapid (< 60 nanosecond) photogeneration of ferrous Ru-modified 4Bpa72 cyt c in the conformationally altered alkaline state demonstrates that laser-induced ET can be employed to study submicrosecond protein-folding events.
Resumo:
Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by means of perturbed equilibrium techniques. We have prepared a three electron reduced, CO inhibited form of the enzyme in which cytochrome a and copper A are partially reduced an in intramolecular redox equilibrium. When these samples were photolyzed using a nitrogen laser (0.6 µs, 1.0 mJ pulses) changes in absorbance at 598 nm and 830 nm were observed which are consistent with a fast electron from cytochrome a to copper A. The absorbance changes at 598 nm have an apparent rate of 17,200 ± 1,700 s^(-1) (1σ), at pH 7.0 and 25.5 °C. These changes were not observed in either the CO mixed valence or CO inhibited fully reduced forms of the enzyme. The rate is fastest at about pH 8.0, and falls off in either direction, and there is a small, but clear temperature dependence. The process was also observed in the cytochrome c -- cytochrome c oxidase high affinity complex.
This rate is far faster than any rate measured or inferred previously for the cytochrome a -- copper A electron equilibration, but the interpretation of these results is hampered by the fact that the relaxation could only be followed during the time before CO became rebound to the oxygen binding site. The meaning of our our measured rate is discussed, along with other reported rates for this process. In addition, a temperature-jump experiment on the same system is discussed.
We have also prepared a partially reduced, cyanide inhibited form of the enzyme in which cytochrome a, copper A and copper B are partially reduced and in redox equilibrium. Warming these samples produced absorbance changes at 605 nm which indicate that cytochrome a was becoming more oxidized, but there were no parallel changes in absorbance at 830 nm as would be expected if copper A was becoming reduced. We concluded that electrons were being redistributed from cytochrome a to copper B. The kinetics of the absorbance changes at 605 nm were investigated by temperature-jump methods. Although a rate could not be resolved, we concluded that the process must occur with an (apparent) rate larger than 10,000 s^(-1).
During the course of the temperature-jump experiments, we also found that non-redox related, temperature dependent absorbance changes in fully reduced CO inhibited cytochrome c oxidase, and in the cyanide mixed valence enzyme, took place with an (apparent) rate faster that 30,000 s^(-1).
Resumo:
We have measured inclusive electron-scattering cross sections for targets of ^(4)He, C, Al, Fe, and Au, for kinematics spanning the quasi-elastic peak, with squared, four momentum transfers (q^2) between 0.23 and 2.89 (GeV/c)^2. Additional data were measured for Fe with q^2's up to 3.69 (GeV/c)^2 These cross sections were analyzed for the y-scaling behavior expected from a simple, impulse-approximation model, and are found to approach a scaling limit at the highest q^2's. The q^2 approach to scaling is compared with a calculation for infinite nuclear matter, and relationships between the scaling function and nucleon momentum distributions are discussed. Deviations from perfect scaling are used to set limits on possible changes in the size of nucleons inside the nucleus.
Resumo:
Multi-step electron tunneling, or “hopping,” has become a fast-developing research field with studies ranging from theoretical modeling systems, inorganic complexes, to biological systems. In particular, the field is exploring hopping mechanisms in new proteins and protein complexes, as well as further understanding the classical biological hopping systems such as ribonuclease reductase, DNA photolyases, and photosystem II. Despite the plethora of natural systems, only a few biologically engineered systems exist. Engineered hopping systems can provide valuable information on key structural and electronic features, just like other kinds of biological model systems. Also, engineered systems can harness common biologic processes and utilize them for alternative reactions. In this thesis, two new hopping systems are engineered and characterized.
The protein Pseudomonas aeruginosa azurin is used as a building block to create the two new hopping systems. Besides being well studied and amenable to mutation, azurin already has been used to successfully engineer a hopping system. The two hopping systems presented in this thesis have a histidine-attached high potential rhenium 4,7-dimethyl-1,10-phenanthroline tricarbonyl [Re(dmp)(CO)3] + label which, when excited, acts as the initial electron acceptor. The metal donor is the type I copper of the azurin protein. The hopping intermediates are all tryptophan, an amino acid mutated into the azurin at select sites between the photoactive metal label and the protein metal site. One system exhibits an inter-molecular hopping through a protein dimer interface; the other system undergoes intra-molecular multi-hopping utilizing a tryptophan “wire.” The electron transfer reactions are triggered by excitation of the rhenium label and monitored by UV-Visible transient absorption, luminescence decays measurements, and time-resolved Infrared spectroscopy (TRIR). Both systems were structurally characterized by protein X-ray crystallography.
Resumo:
A variety of olefin hydride complexes of niobium and tantalum has been prepared in order to study their reactivity and to gain insight into organometallic reaction mechanisms. Examination of a series of ethylene and propylene complexes of niobocene (CP_2Nb; Cp = η^5-C_5H_5), permethylniobocene (Cp*_2Nb; Cp* = η^5-C_5(CH_3)_5), tantalocene, and permethyltantalocene has indicated that there are both large electronic and steric effects deriving from the metal (and its ancillary ligands) in the olefin insertion (β-migratory insertion) process. Furthermore, a thermodynamic and kinetic analysis has been completed for a series of substituted styrene complexes of niobocene in order to better understand the important electronic properties of the olefin. The results are in accord with a concerted four-center process with only moderate charge development.
The special case of β-migratory insertion of a hydride ligand into coordinated benzyne has also been studied for the permethyltantalocene system. The coordinatively unsaturated (sixteen electron) phenyl tautomer, which is made accessible by the facile benzyne hydride insertion reaction, readily reacts with a variety of ligands, L, to afford Cp*_2 Ta(C_6H_5)L complexes (L = CO, O_2, NC≡R, :CH_2, H_2, etc.). This family of compounds exhibits interesting reactivity (a-migratory insertion, O_2 activation, and reductive elimination) which is discussed in some detail.
Finally a series of paramagnetic seventeen electron Cp*_2 TaX_2 (X = halide, alkyl, hydride) complexes, and the corresponding cationic and anionic species, have been prepared and studied. The odd electron neutral complexes exhibit surprising thermal stability and undergo very little reactivity. While the chemistry of the anionic compounds is almost completely dominated by their potent reducing power, that of the cations is quite diverse and amenable for study. Therefore the syntheses and reactivity (1 ,2-eliminations, ligand insertions, and deprotonation reactions) of these coordinatively unsaturated sixteen electron species are presented.
Resumo:
A study of the pH and temperature dependence of the redox potentials of azurins from five species of bacteria has been performed. The variations in the potentials with pH have been interpreted in terms of electrostatic interactions between the copper site and titrating histidine residues, including the effects of substitutions in the amino acid sequences of the proteins on the electrostatic interactions. A comparison of the observed pH dependences with predictions based on histidine pK_a values known for Pseudomonas aeruginosa (Pae), Alcaligenes denitrificans (Ade), and Alcaligenes faecalis (Afa) azurins indicates that the Pae and Ade redox potentials exhibit pH dependences in line with electrostatic arguments, while Afa azurin exhibits more complex behavior. Redox enthalpies and entropies for four of the azurins at low and high pH values have also been obtained. Based on these results in conjuction with the variable pH experiments, it appears that Bordetella bronchiseptica azurin may undergo a more substantial conformational change with pH than has been observed for other species of azurin.
The temperature dependence of the redox potential of bovine erythrocyte superoxide dismutase (SOD) has been determined at pH 7.0, with potassium ferricyanide as the mediator. The following thermodynamic parameters have been obtained (T = 25°C): E°' = 403±5 mV vs. NHE, ΔG°' = -9.31 kcal/mol, ΔH°' = -21.4 kcal/mol, ΔS°' = -40.7 eu, ΔS°'_(rc) = -25.1 eu. It is apparent from these results that ΔH°', rather than ΔS°', is the dominant factor in establishing the high redox potential of SOD. The large negative enthalpy of reduction may also reflect the factors which give SOD its high specificity toward reduction and oxidation by superoxide.
Resumo:
A semisynthetic binuclear metalloprotein has been prepared by appending the pentaammineruthenium moiety to histidine 39 of the cytochrome c from the yeast Candida krusei. The site of ruthenium binding was identified by peptide mapping. Spectroscopic and electrochemical properties of the derivative indicate the protein conformation is unperturbed by the modification. A preliminary (minimum) rate constant of 170s^(-1) has been determined for the intramolecular electron transfer from ruthenium(II) to iron(III), which occurs over a distance of at least 13Å (barring major conformational changes). Electrochemical studies indicate that this reaction should proceed with a driving force of ~170mV. The rate constant is an order of magnitude faster than that observed in horse heart cytochrome c for intramolecular electron transfer from pentaammineruthenium(II)(histidine 33) to iron(III) (over a similar distance, and with a similar driving force), suggesting a medium or orientation effect makes the Candida intramolecular electron transfer more favorable.