137 resultados para Dual ion beam sputtering
Resumo:
INTRODUÇÃO: a espessura das tábuas ósseas que recobrem os dentes por vestibular e lingual constitui um dos fatores limitantes da movimentação dentária. O avanço tecnológico em Imaginologia permitiu avaliar detalhadamente essas regiões anatômicas por meio da utilização da tomografia computadorizada de feixe cônico (TCFC). OBJETIVO: descrever e padronizar, pormenorizadamente, um método para mensuração das tábuas ósseas vestibular e lingual dos maxilares nas imagens de tomografia computadorizada de feixe cônico. METODOLOGIA: a padronização digital da posição da imagem da face deve constituir o primeiro passo antes da seleção dos cortes de TCFC. Dois cortes axiais de cada maxilar foram empregados para a mensuração da espessura do osso alveolar vestibular e lingual. Utilizou-se como referência a junção cemento-esmalte dos primeiros molares permanentes, tanto na arcada superior quanto na inferior. RESULTADOS: cortes axiais paralelos ao plano palatino foram indicados para avaliação quantitativa do osso alveolar na maxila. Na arcada inferior, os cortes axiais devem ser paralelos ao plano oclusal funcional. CONCLUSÃO: o método descrito apresenta reprodutibilidade para utilização em pesquisas, assim como para a avaliação clínica das repercussões periodontais da movimentação dentária, ao permitir a comparação de imagens pré e pós-tratamento.
Resumo:
OBJECTIVE: Removable partial dentures (RPD) require different hygiene care, and association of brushing and chemical cleansing is the most recommended to control biofilm formation. However, the effect of cleansers has not been evaluated in RPD metallic components. The aim of this study was to evaluate in vitro the effect of different denture cleansers on the weight and ion release of RPD. MATERIAL AND METHODS: Five specimens (12x3 mm metallic disc positioned in a 38x18x4 mm mould filled with resin), 7 cleanser agents [Periogard (PE), Cepacol (CE), Corega Tabs (CT), Medical Interporous (MI), Polident (PO), 0.05% sodium hypochlorite (NaOCl), and distilled water (DW) (control)] and 2 cobalt-chromium alloys [DeguDent (DD), and VeraPDI (VPDI)] were used for each experimental situation. One hundred and eighty immersions were performed and the weight was analyzed with a high precision analytic balance. Data were recorded before and after the immersions. The ion release was analyzed using mass spectrometry with inductively coupled plasma. Data were analyzed by two-way ANOVA and Tukey HSD post hoc test at 5% significance level. RESULTS: Statistical analysis showed that CT and MI had higher values of weight loss with higher change in VPDI alloy compared to DD. The solutions that caused more ion release were NaOCl and MI. CONCLUSIONS: It may be concluded that 0.05% NaOCl and Medical Interporous tablets are not suitable as auxiliary chemical solutions for RPD care.
Resumo:
The determination of the success of endodontic treatment has been often discussed based on outcome obtained by periapical radiography. The aim of this study was to verify the influence of intracanal post on apical periodontitis detected by cone-beam computed tomography (CBCT). A consecutive sample of 1020 images (periapical radiographs and CBCT scans) taken from 619 patients (245 men; mean age, 50.1 years) between February 2008 and September 2009 were used in this study. Presence and intracanal post length (short, medium and long) were associated with apical periodontitis (AP). Chi-square test was used for statistical analyses. Significance level was set at p<0.01. The kappa value was used to assess examiner variability. From a total of 591 intracanal posts, AP was observed in 15.06%, 18.78% and 7.95% using periapical radiographs, into the different lengths, short, medium and long, respectively (p=0.466). Considering the same posts length it was verified AP in 24.20%, 26.40% and 11.84% observed by CBCT scans, respectively (p=0.154). From a total of 1,020 teeth used in this study, AP was detected in 397 (38.92%) by periapical radiography and in 614 (60.19%) by CBCT scans (p<0.001). The distribution of intracanal posts in different dental groups showed higher prevalence in maxillary anterior teeth (54.79%). Intracanal posts lengths did not influenced AP. AP was detected more frequently when CBCT method was used.
Resumo:
This article describes and discusses a method to determine root curvature radius by using cone-beam computed tomography (CBCT). The severity of root canal curvature is essential to select instrument and instrumentation technique. The diagnosis and planning of root canal treatment have traditionally been made based on periapical radiography. However, the higher accuracy of CBCT images to identify anatomic and pathologic alterations compared to panoramic and periapical radiographs has been shown to reduce the incidence of false-negative results. In high-resolution images, the measurement of root curvature radius can be obtained by circumcenter. Based on 3 mathematical points determined with the working tools of Planimp® software, it is possible to calculate root curvature radius in both apical and coronal directions. The CBCT-aided method for determination of root curvature radius presented in this article is easy to perform, reproducible and allows a more reliable and predictable endodontic planning, which reflects directly on a more efficacious preparation of curved root canals.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the morphology of glass (GF), carbon (CF) and glass/carbon (G/CF) fiber posts and their bond strength to self or dual-cured resin luting agents. MATERIAL AND METHODS: Morphological analysis of each post type was conducted under scanning electron microscopy (SEM). Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (α=0.05). Failure modes were evaluated under optical microscopy and SEM. RESULTS: GF presented wider fibers and higher amount of matrix than CF, and G/CF presented carbon fibers surrounded by glass fibers, and both involved by matrix. For CF and GF, the dual-cured material presented significantly higher (p<0.05) bond strength than the self-cured agent. For the dual agent, CF presented similar bond strength to GF (p>0.05), but higher than that of G/CF (p<0.05). For the self-cured agent, no significant differences (p>0.05) were detected, irrespective of the post type. For GF and G/CF, all failures were considered mixed, while a predominance of adhesive failures was detected for CF. CONCLUSION: The bonding between fiber posts and luting agents was affected by the type of fibers and polymerization mode of the cement. When no surface treatment of the post is performed, the bonding between glass fiber post and dual-cured agent seems to be more reliable.
Resumo:
There are many studies that compare the accuracy of multislice (MSCT) and cone beam (CBCT) computed tomography for evaluations in the maxillofacial region. However, further studies comparing both acquisition techniques for the evaluation of simulated mandibular bone lesions are needed. The aim of this study was to compare the accuracy of MSCT and CBCT in the diagnosis of simulated mandibular bone lesions by means of cross sectional images and axial/MPR slices. Lesions with different dimensions, shape and locularity were produced in 15 dry mandibles. The images were obtained following the cross sectional and axial/MPR (Multiplanar Reconstruction) imaging protocols and were interpreted independently. CBCT and MSCT showed similar results in depicting the percentage of cortical bone involvement, with great sensitivity and specificity (p < 0.005). There were no significant intra- or inter-examiner differences between axial/MPR images and cross sectional images with regard to sensitivity and specificity. CBCT showed results similar to those of MSCT for the identification of the number of simulated bone lesions. Cross sectional slices and axial/MPR images presented high accuracy, proving useful for bone lesion diagnosis.
Resumo:
There are many limitations to image acquisition, using conventional radiography, of the temporomandibular joint (TMJ) region. The Computed Tomography (CT) scan is a better option, due to its higher accuracy, for purposes of diagnosis, surgical planning and treatment of bone injuries. The aim of the present study was to analyze two protocols of cone beam computed tomography for the evaluation of simulated mandibular condyle bone lesions. Spherical lesions were simulated in 30 dry mandibular condyles, using dentist drills and drill bits sizes 1, 3 and 6. Each of the mandibular condyles was submitted to cone beam computed tomography (CBCT) using two protocols: 1) axial, coronal and sagittal multiplanar reconstruction (MPR); and 2) sagittal plus coronal slices throughout the longitudinal axis of the mandibular condyles. For these protocols, 2 observers analyzed the CBCT images independently, regarding the presence or not of injuries. Only one of the observers, however, performed on 2 different occasions. The results were compared to the gold standard, evaluating the percentage of agreement, degree of accuracy of CBCT protocols and observers' examination. The z test was used for the statistical analysis. The results showed there were no statistically significant differences between the 2 protocols. There was greater difficulty in the assessment of small-size simulated lesions (drill # 1). From the results of this study, it can be concluded that CBCT is an accurate tool for analyzing mandibular condyle bone lesions, with the MPR protocol showing slightly better results than the sagittal plus coronal slices throughout the longitudinal axis.
Resumo:
Amyloglucosidase enzyme was produced by Aspergillus niger NRRL 3122 from solid-state fermentation, using deffated rice bran as substrate. The effects of process parameters (pH, temperature) in the equilibrium partition coefficient for the system amyloglucosidase - resin DEAE-cellulose were investigated, aiming at obtaining the optimum conditions for a subsequent purification process. The highest partition coefficients were obtained using 0.025M Tris-HCl buffer, pH 8.0 and 25ºC. The conditions that supplied the highest partition coefficient were specified, the isotherm that better described the amyloglucosidase process of adsorption obtained. It was observed that the adsorption could be well described by Langmuir equation and the values of Qm and Kd estimated at 133.0 U mL-1 and 15.4 U mL-1, respectively. From the adjustment of the kinetic curves using the fourth-order Runge-Kutta algorithm, the adsorption (k1) and desorption (k2) constants were obtained through optimization by the least square procedure, and the values calculated were 2.4x10-3 mL U-1 min-1 for k1 and 0.037 min-1 for k2 .
Resumo:
The aqueous alkaline reaction of 1,3-bis(4-cyanopyridinium)propane dibromide, a reactant constituted of two pyridinium rings linked by a three-methylene bridge, generates a novel compound,1 -(4-cyano-2-oxo-1,2-dihydro-1-pyridyl)-3-(4-cyano-1,2-dihydro-1-pyridyl)propane. The reaction pathway is attributed to the proximity of the OH- ion inserted between two pyridinium moieties, which occurs only in bis(pyridinium) derivatives connected by short methylene spacers, where charge-conformational effects are important.
Resumo:
As technology improves human vision, some procedures currently performed may be causing a decrease of the natural UV protection of the cornea. A portable dual beam system prototype was assembled for physicians for clinical studies of these effects on the corneas endowing two types of 300-400 nm evaluations: 1, regularly donated corneas and 2, simulating refractive keratectomy by corneal lamellae removal. The system performs 500 measurements/s, providing +/- 0.25% precision for the transmittance. The measurements performed on the prototype are 95% in agreement with Cary 17 and HR4000CG-UV-NIR Ocean Optics spectrophotometers. Preliminary studies on cadaveric corneas demonstrate that, as the stromal layer is reduced (similar to 150 mu m depth), there is significant loss-an average of 7.1%.-of the cornea's natural UV protection. The prototype is being tested in an eye bank for routine evaluation of donor corneas. (C) 2010 Optical Society of America
Resumo:
Uncertainties in damping estimates can significantly affect the dynamic response of a given flexible structure. A common practice in linear structural dynamics is to consider a linear viscous damping model as the major energy dissipation mechanism. However, it is well known that different forms of energy dissipation can affect the structure's dynamic response. The major goal of this paper is to address the effects of the turbulent frictional damping force, also known as drag force on the dynamic behavior of a typical flexible structure composed of a slender cantilever beam carrying a lumped-mass on the tip. First, the system's analytical equation is obtained and solved by employing a perturbation technique. The solution process considers variations of the drag force coefficient and its effects on the system's response. Then, experimental results are presented to demonstrate the effects of the nonlinear quadratic damping due to the turbulent frictional force on the system's dynamic response. In particular, the effects of the quadratic damping on the frequency-response and amplitude-response curves are investigated. Numerically simulated as well as experimental results indicate that variations on the drag force coefficient significantly alter the dynamics of the structure under investigation. Copyright (c) 2008 D. G. Silva and P. S. Varoto.
Resumo:
This work deals with an improved plane frame formulation whose exact dynamic stiffness matrix (DSM) presents, uniquely, null determinant for the natural frequencies. In comparison with the classical DSM, the formulation herein presented has some major advantages: local mode shapes are preserved in the formulation so that, for any positive frequency, the DSM will never be ill-conditioned; in the absence of poles, it is possible to employ the secant method in order to have a more computationally efficient eigenvalue extraction procedure. Applying the procedure to the more general case of Timoshenko beams, we introduce a new technique, named ""power deflation"", that makes the secant method suitable for the transcendental nonlinear eigenvalue problems based on the improved DSM. In order to avoid overflow occurrences that can hinder the secant method iterations, limiting frequencies are formulated, with scaling also applied to the eigenvalue problem. Comparisons with results available in the literature demonstrate the strength of the proposed method. Computational efficiency is compared with solutions obtained both by FEM and by the Wittrick-Williams algorithm.
Resumo:
Metal oxide-semiconductor capacitors with TiO(x) deposited with different O(2) partial pressures (30%, 35%, and 40%) and annealed at 550, 750, and 1000 degrees C were fabricated and characterized. Fourier transform infrared, x-ray near edge spectroscopy, and elipsometry measurements were performed to characterize the TiO(x) films. TiO(x)N(y) films were also obtained by adding nitrogen to the gaseous mixture and physical results were presented. Capacitance-voltage (1 MHz) and current-voltage measurements were utilized to obtain the effective dielectric constant, effective oxide thickness, leakage current density, and interface quality. The results show that the obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density (for V(G)=-1 V, for some structures as low as 1 nA/cm(2), acceptable for complementary metal oxide semiconductor circuits fabrication), indicating that this material is a viable, in terms of leakage current density, highk substitute for current ultrathin dielectric layers. (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3043537]
Resumo:
The synthesis of [Ru(NO(2)) L(bpy)(2)](+) (bpy = 2,2'-bipyridine and L = pyridine (py) and pyrazine (pz)) can be accomplished by addition of [Ru(NO) L(bpy) 2](PF(6))(3) to aqueous solutions of physiological pH. The electrochemical processes of [Ru(NO2) L(bpy) 2]+ in aqueous solution were studied by cyclic voltammetry and differential pulse voltammetry. The anodic scan shows a peak around 1.00 V vs. Ag/AgCl attributed to the oxidation process centered on the metal ion. However, in the cathodic scan a second peak around-0.60 V vs. Ag/AgCl was observed and attributed to the reduction process centered on the nitrite ligand. The controlled reduction potential electrolysis at-0.80 V vs. Ag/AgCl shows NO release characteristics as judged by NO measurement with a NO-sensor. This assumption was confirmed by ESI/MS(+) and spectroelectrochemical experiment where cis-[Ru(bpy)(2)L(H(2)O)](2+) was obtained as a product of the reduction of cis-[Ru(II)(NO(2)) L(bpy)(2)](+). The vasorelaxation observed in denuded aortic rings pre-contracted with 0.1 mu mol L(-1) phenylephrine responded with relaxation in the presence of cis-[RuII(NO2) L(bpy) 2]+. The potential of rat aorta cells to metabolize cis-[RuII(NO(2)) L(bpy)(2)](+) was also followed by confocal analysis. The obtained results suggest that NO release happens by reduction of cis-[RuII(NO(2)) L(bpy)(2)](+) inside the cell. The maximum vasorelaxation was achieved with 1 x 10(-5) mol L(-1) of cis-[RuII(NO(2)) L(bpy)(2)](+) complex.
Resumo:
Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d + Au, and Au + Au collisions at root(S)NN = 200 GeV by the STAR experiment. Dijet structures are observed in pp, d + Au and peripheral Au + Au collisions. An additional structure is observed in central Au + Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be theta = 1.37 +/- 0.02(stat)(-0.07)(+0.06)(syst), independent of p perpendicular to.