24 resultados para Discépolo, Armando
Resumo:
In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of furan on the silicon (001) surface. A direct comparison of different adsorption structures with x-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), high resolution electron energy loss spectroscopy (HREELS), near edge x-ray absorption fine structure (NEXAFS), and high resolution spectroscopy experimental data allows us to identify the [4 + 2] cycloaddition reaction as the most probable adsorbate. In addition, theoretical scanning tunnelling microscopy (STM) images are presented, with a view to contributing to further experimental investigations.
Resumo:
5-(4-(N-tert-Butyl-N-aminoxylphenyl)) pyrimidine (RL, 4PPN) forms crystallographically isostructural and isomorphic pseudo-octahedral M(RL)(2)(hfac)(2) complexes with M(hfac)(2), M = Zn, Cu, Ni, Co, and Mn. Multiple close contacts occur between sites of significant spin density of the organic radical units. Magnetic behavior of the Zn, Cu, Ni, Co complexes appears to involve multiple exchange pathways, with multiple close crystallographic contacts between sites that EPR (of 4PPN) indicates to have observable spin density. Powder EPR spectra at room temperature and low temperature are reported for each complex. Near room temperature, the magnetic moments of the complexes are roughly equal to those expected by a sum of non-interacting moments (two radicals plus ion). As temperature decreases, AFM exchange interactions become evident in all of the complexes. The closest fits to the magnetic data were found for a 1-D Heisenberg AFM chain model in the Zn(II) complex (J/k = (-)7 K), and for three-spin RL-M-RL exchange in the other complexes (J/k = (-)26 K, (-)3 K, (-) 6 K, for Cu(II), Ni(II), and Co(II) complexes, respectively). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Polycrystalline La(0.86)Sr(0.14)Mn(1-x)Cu(x)O(3+delta) (x = 0, 0.05, 0.10, 0.15, 0.20) manganites were investigated by means of magnetic measurements and zero-field (139)La and (55)Mn nuclear magnetic resonance (NMR) spectroscopy. Magnetization versus temperature measurements revealed a paramagnetic to ferromagnetic transition in most samples, with lower Curie temperatures and broader transitions for samples with higher Cu contents. The details of the magnetization measurements suggested a phase-separated scenario, with ferromagnetic clusters embedded in an antiferromagnetic matrix, especially for the samples with large Cu contents (x = 0.15 and 0.20). Zero-field (139)La NMR measurements confirmed this finding, since the spectral features remained almost unchanged for all Cu-doped samples, whereas the bulk magnetization was drastically reduced with increasing Cu content. (55)Mn NMR spectra were again typical of ferromagnetic regions, with a broadening of the resonance line caused by the disorder introduced by the Cu doping. The results indicate a coexistence of different magnetic phases in the manganites studied, with the addition of Cu contributing to the weakening of the double-exchange interaction in most parts of the material.
Resumo:
Let f be a homeomorphism of the closed annulus A that preserves the orientation, the boundary components and that has a lift (f) over tilde to the infinite strip (A) over tilde which is transitive. We show that, if the rotation numbers of both boundary components of A are strictly positive, then there exists a closed nonempty unbounded set B(-) subset of (A) over tilde such that B(-) is bounded to the right, the projection of B to A is dense, B - (1, 0) subset of B and (f) over tilde (B) subset of B. Moreover, if p(1) is the projection on the first coordinate of (A) over tilde, then there exists d > 0 such that, for any (z) over tilde is an element of B(-), lim sup (n ->infinity) p1((f) over tilde (n)((z) over tilde)) - p(1) ((z) over tilde)/n < - d. In particular, using a result of Franks, we show that the rotation set of any homeomorphism of the annulus that preserves orientation, boundary components, which has a transitive lift without fixed points in the boundary is an interval with 0 in its interior.
Resumo:
We study a given fixed continuous function phi : S(1) -> R and an endomorphism f : S(1)-> S(1), whose f-invariant probability measures maximize integral phi d mu. We prove that the set of endomorphisms having a f maximizing invariant measure supported on a periodic orbit is C(0) dense.
Resumo:
We prove that given a compact n-dimensional connected Riemannian manifold X and a continuous function g : X -> R, there exists a dense subset of the space of homeomorphisms of X such that for all T in this subset, the integral integral(X) g d mu, considered as a function on the space of all T-invariant Borel probability measures mu, attains its maximum on a measure supported on a periodic orbit.
Resumo:
In the present work, a new approach for the determination of the partition coefficient in different interfaces based on the density function theory is proposed. Our results for log P(ow) considering a n-octanol/water interface for a large super cell for acetone -0.30 (-0.24) and methane 0.95 (0.78) are comparable with the experimental data given in parenthesis. We believe that these differences are mainly related to the absence of van der Walls interactions and the limited number of molecules considered in the super cell. The numerical deviations are smaller than that observed for interpolation based tools. As the proposed model is parameter free, it is not limited to the n-octanol/water interface.
Resumo:
A novel Schiff base-copper(II) complex [Cu(2)L(2)(N(3))(2)](ClO(4))(2) 1, where L = (4-imidazolyl)ethylene-2-amino-1-ethylpyridine (apyhist), containing azide-bridges between adjacent copper ions in a dinuclear arrangement was isolated and characterized both in the solid state and in solution by X-ray crystallography and different spectroscopic techniques. Azide binding constants were estimated from titrations of the precursor [CuL(H(2)O)(2)](2+) solutions with sodium azide, giving rise to the azido-bridged species, [Cu(2)L(2)(N(3))(2)](2+). Raman spectra showed asymmetric stretching band at 2060 cm(-1), indicating the presence of azido ligands with a symmetric mu(1,) (1) binding geometry. EPA spectra, in frozen methanol/water solutions at 77 K, exhibited characteristic features of copper centers in tetragonal pyramidal coordination geometry, exhibiting magnetic interactions between them. Further, in solid state, two different values for magnetic coupling in this species were obtained, J/k = -(5.14 +/- 0.02) cm(-1) attributed to the mu(1, 1) azide-bridge mode, and J`z`/k = -(2.94 +/- 0.11) cm(-1) for the interaction between dinuclear moieties via water/perchorate bridges. Finally, an attempt was made to correlate structure and magnetic data for this dinuclear asymmetric end-on azido bridged-copper(II) 1 complex with those of another correlated dinuclear system, complex [Cu(2)L(2)Cl(2)](ClO(4))(2) 2, containing the same tridentate diimine ligand, but with chloro-bridged groups between the copper centres.
Resumo:
The reaction Of Cu(ClO(4))(2)center dot 6H(2)O with dimethylglyoxime (H(2)dmg) in a 1:1 mole ratio in aqueous methanol at room temperature affords the dinuclear complex [Cu(2)(mu-Hdmg)(4)] (1). Reaction of 1 with [Cu(bpy)(H(2)O)(2)](ClO(4))(2) (bpy = 2,2`-bipyridine) in a 1:1 mole ratio in aqueous methanol at room temperature yields the tetranuclear complex [Cu(2)(mu-HdMg)(2)(mu-dMg)(2)(bpy)(2)(H(2)O)(2)](ClO(4))(2) (2). The direct reaction of Cu(ClO(4))(2)center dot 6H(2)O with H(2)dmg and bpy in a 2:21 mole ratio in aqueous methanol at room temperature also yields 2 quantitatively. The complexes 1 and 2 were structurally characterized by X-ray crystallography. Unlike the binding in Ni/Co-dmg, two different types of N-O bridging modes during the oxime based metallacycle formation and stacking of square planar units have been identified in these complexes. The neutral dinuclear complex 1 has CuN(4)O coordination spheres and complex 2 consists of a dicationic [Cu(2)(mu-HdMg)(2)(mu-dMg)(2)(bpy)(2)(H(2)O)(2)](2+) unit and two uncoordinated ClO(4)(-) anions having CuN(4)O and CuN(2)O(3) coordination spheres. The two copper(II) ions are at a distance of 3.846(8) angstrom in 1 for the trans out of plane link and at 3.419(10) and 3.684(10) angstrom in 2 for the trans out of plane and cis in plane arrangements, respectively. The average Cu-N(oxime) distances are 1.953 and 1.935 angstrom, respectively. The average basal and apical Cu-N(oxime) distances are 1.945, 2.295 and 2.429 angstrom. The UV-Vis spectra of 2 is similar to the spectrum of the reaction mixture of 1 and [Cu(bpy)(H(2)O)(2)](2+). Variable temperature magnetic properties measurement shows that the interaction between the paramagnetic copper centers in complex I is antiferromagnetic in nature. The EPR spectra of frozen solution of the complexes at 77 K consist of axially symmetric fine-structure transitions (Delta M(S) = 1) and half-field signals (Delta M(S) = 2) at ca. 1600 G, suggesting the presence of appreciable Cu-Cu interactions. (C) 2009 Elsevier Ltd. All rights reserved.