70 resultados para DNA Sequence, Hidden Markov Model, Bayesian Model, Sensitive Analysis, Markov Chain Monte Carlo
Resumo:
Diagnostic methods have been an important tool in regression analysis to detect anomalies, such as departures from error assumptions and the presence of outliers and influential observations with the fitted models. Assuming censored data, we considered a classical analysis and Bayesian analysis assuming no informative priors for the parameters of the model with a cure fraction. A Bayesian approach was considered by using Markov Chain Monte Carlo Methods with Metropolis-Hasting algorithms steps to obtain the posterior summaries of interest. Some influence methods, such as the local influence, total local influence of an individual, local influence on predictions and generalized leverage were derived, analyzed and discussed in survival data with a cure fraction and covariates. The relevance of the approach was illustrated with a real data set, where it is shown that, by removing the most influential observations, the decision about which model best fits the data is changed.
Resumo:
Background: The Brazilian population is mainly descendant from European colonizers, Africans and Native Americans. Some Afro-descendants lived in small isolated communities since the slavery period. The epidemiological status of HBV infection in Quilombos communities from northeast of Brazil remains unknown. The aim of this study was to characterize the HBV genotypes circulating inside a Quilombo isolated community from Maranhao State, Brazil. Methods: Seventy-two samples from Frechal Quilombo community at Maranhao were collected. All serum samples were screened by enzyme-linked immunosorbent assays for the presence of hepatitis B surface antigen ( HBsAg). HBsAg positive samples were submitted to DNA extraction and a fragment of 1306 bp partially comprising HBsAg and polymerase coding regions (S/POL) was amplified by nested PCR and its nucleotide sequence was determined. Viral isolates were genotyped by phylogenetic analysis using reference sequences from each genotype obtained from GenBank (n = 320). Sequences were aligned using Muscle software and edited in the SE-AL software. Bayesian phylogenetic analyses were conducted using Markov Chain Monte Carlo (MCMC) method to obtain the MCC tree using BEAST v.1.5.3. Results: Of the 72 individuals, 9 (12.5%) were HBsAg-positive and 4 of them were successfully sequenced for the 1306 bp fragment. All these samples were genotype A1 and grouped together with other sequences reported from Brazil. Conclusions: The present study represents the first report on the HBV genotypes characterization of this community in the Maranhao state in Brazil where a high HBsAg frequency was found. In this study, we reported a high frequency of HBV infection and the exclusive presence of subgenotype A1 in an Afro-descendent community in the Maranhao State, Brazil.
Resumo:
In this paper, we present different ofrailtyo models to analyze longitudinal data in the presence of covariates. These models incorporate the extra-Poisson variability and the possible correlation among the repeated counting data for each individual. Assuming a CD4 counting data set in HIV-infected patients, we develop a hierarchical Bayesian analysis considering the different proposed models and using Markov Chain Monte Carlo methods. We also discuss some Bayesian discrimination aspects for the choice of the best model.
Resumo:
In this paper we make use of some stochastic volatility models to analyse the behaviour of a weekly ozone average measurements series. The models considered here have been used previously in problems related to financial time series. Two models are considered and their parameters are estimated using a Bayesian approach based on Markov chain Monte Carlo (MCMC) methods. Both models are applied to the data provided by the monitoring network of the Metropolitan Area of Mexico City. The selection of the best model for that specific data set is performed using the Deviance Information Criterion and the Conditional Predictive Ordinate method.
Resumo:
In this paper we present a hierarchical Bayesian analysis for a predator-prey model applied to ecology considering the use of Markov Chain Monte Carlo methods. We consider the introduction of a random effect in the model and the presence of a covariate vector. An application to ecology is considered using a data set related to the plankton dynamics of lake Geneva for the year 1990. We also discuss some aspects of discrimination of the proposed models.
Resumo:
Background: Hepatitis B virus (HBV) can be classified into nine genotypes (A-I) defined by sequence divergence of more than 8% based on the complete genome. This study aims to identify the genotypic distribution of HBV in 40 HBsAg-positive patients from Rondonia, Brazil. A fragment of 1306 bp partially comprising surface and polymerase overlapping genes was amplified by PCR. Amplified DNA was purified and sequenced. Amplified DNA was purified and sequenced on an ABI PRISM (R) 377 Automatic Sequencer (Applied Biosystems, Foster City, CA, USA). The obtained sequences were aligned with reference sequences obtained from the GenBank using Clustal X software and then edited with Se-Al software. Phylogenetic analyses were conducted by the Markov Chain Monte Carlo (MCMC) approach using BEAST v.1.5.3. Results: The subgenotypes distribution was A1 (37.1%), D3 (22.8%), F2a (20.0%), D4 (17.1%) and D2 (2.8%). Conclusions: These results for the first HBV genotypic characterization in Rondonia state are consistent with other studies in Brazil, showing the presence of several HBV genotypes that reflects the mixed origin of the population, involving descendants from Native Americans, Europeans, and Africans.
Resumo:
Hepatitis C virus (HCV) is a frequent cause of acute and chronic hepatitis and a leading cause for cirrhosis of the liver and hepatocellular carcinoma. HCV is classified in six major genotypes and more than 70 subtypes. In Colombian blood banks, serum samples were tested for anti-HCV antibodies using a third-generation ELISA. The aim of this study was to characterize the viral sequences in plasma of 184 volunteer blood donors who attended the ""Banco Nacional de Sangre de la Cruz Roja Colombiana,`` Bogota, Colombia. Three different HCV genomic regions were amplified by nested PCR. The first of these was a segment of 180 bp of the 5`UTR region to confirm the previous diagnosis by ELISA. From those that were positive to the 5`UTR region, two further segments were amplified for genotyping and subtyping by phylogenetic analysis: a segment of 380 bp from the NS5B region; and a segment of 391 bp from the E1 region. The distribution of HCV subtypes was: 1b (82.8%), 1a (5.7%), 2a (5.7%), 2b (2.8%), and 3a (2.8%). By applying Bayesian Markov chain Monte Carlo simulation, it was estimated that HCV-1b was introduced into Bogota around 1950. Also, this subtype spread at an exponential rate between about 1970 to about 1990, after which transmission of HCV was reduced by anti-HCV testing of this population. Among Colombian blood donors, HCV genotype 1b is the most frequent genotype, especially in large urban conglomerates such as Bogota, as is the case in other South American countries. J. Med. Virol. 82: 1889-1898, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
In this paper, we introduce a Bayesian analysis for survival multivariate data in the presence of a covariate vector and censored observations. Different ""frailties"" or latent variables are considered to capture the correlation among the survival times for the same individual. We assume Weibull or generalized Gamma distributions considering right censored lifetime data. We develop the Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods.
Resumo:
Background: Hepatitis C virus (HCV) is an important human pathogen affecting around 3% of the human population. In Brazil, it is estimated that there are approximately 2 to 3 million HCV chronic carriers. There are few reports of HCV prevalence in Rondonia State (RO), but it was estimated in 9.7% from 1999 to 2005. The aim of this study was to characterize HCV genotypes in 58 chronic HCV infected patients from Porto Velho, Rondonia (RO), Brazil. Methods: A fragment of 380 bp of NS5B region was amplified by nested PCR for genotyping analysis. Viral sequences were characterized by phylogenetic analysis using reference sequences obtained from the GenBank (n = 173). Sequences were aligned using Muscle software and edited in the SE-AL software. Phylogenetic analyses were conducted using Bayesian Markov chain Monte Carlo simulation (MCMC) to obtain the MCC tree using BEAST v. 1.5.3. Results: From 58 anti-HCV positive samples, 22 were positive to the NS5B fragment and successfully sequenced. Genotype 1b was the most prevalent in this population (50%), followed by 1a (27.2%), 2b (13.6%) and 3a (9.0%). Conclusions: This study is the first report of HCV genotypes from Rondonia State and subtype 1b was found to be the most prevalent. This subtype is mostly found among people who have a previous history of blood transfusion but more detailed studies with a larger number of patients are necessary to understand the HCV dynamics in the population of Rondonia State, Brazil.
Resumo:
Background: GB virus C (GBV-C) is an enveloped positive-sense ssRNA virus belonging to the Flaviviridae family. Studies on the genetic variability of the GBV-C reveals the existence of six genotypes: genotype 1 predominates in West Africa, genotype 2 in Europe and America, genotype 3 in Asia, genotype 4 in Southwest Asia, genotype 5 in South Africa and genotype 6 in Indonesia. The aim of this study was to determine the frequency and genotypic distribution of GBV-C in the Colombian population. Methods: Two groups were analyzed: i) 408 Colombian blood donors infected with HCV (n = 250) and HBV (n = 158) from Bogota and ii) 99 indigenous people with HBV infection from Leticia, Amazonas. A fragment of 344 bp from the 5' untranslated region (5' UTR) was amplified by nested RT PCR. Viral sequences were genotyped by phylogenetic analysis using reference sequences from each genotype obtained from GenBank (n = 160). Bayesian phylogenetic analyses were conducted using Markov chain Monte Carlo (MCMC) approach to obtain the MCC tree using BEAST v. 1.5.3. Results: Among blood donors, from 158 HBsAg positive samples, eight 5.06% (n = 8) were positive for GBV-C and from 250 anti-HCV positive samples, 3.2%(n = 8) were positive for GBV-C. Also, 7.7% (n = 7) GBV-C positive samples were found among indigenous people from Leticia. A phylogenetic analysis revealed the presence of the following GBV-C genotypes among blood donors: 2a (41.6%), 1 (33.3%), 3 (16.6%) and 2b (8.3%). All genotype 1 sequences were found in co-infection with HBV and 4/5 sequences genotype 2a were found in co-infection with HCV. All sequences from indigenous people from Leticia were classified as genotype 3. The presence of GBV-C infection was not correlated with the sex (p = 0.43), age (p = 0.38) or origin (p = 0.17). Conclusions: It was found a high frequency of GBV-C genotype 1 and 2 in blood donors. The presence of genotype 3 in indigenous population was previously reported from Santa Marta region in Colombia and in native people from Venezuela and Bolivia. This fact may be correlated to the ancient movements of Asian people to South America a long time ago.
Resumo:
Molecular epidemiological data concerning the hepatitis B virus (HBV) in Chile are not known completely. Since the HBV genotype F is the most prevalent in the country, the goal of this study was to obtain full HBV genome sequences from patients infected chronically in order to determine their subgenotypes and the occurrence of resistance-associated mutations. Twenty-one serum samples from antiviral drug-naive patients with chronic hepatitis B were subjected to full-length PCR amplification, and both strands of the whole genomes were fully sequenced. Phylogenetic analyses were performed along with reference sequences available from GenBank (n = 290). The sequences were aligned using Clustal X and edited in the SE-AL software. Bayesian phylogenetic analyses were conducted by Markov Chain Monte Carlo simulations (MCMC) for 10 million generations in order to obtain the substitution tree using BEAST. The sequences were also analyzed for the presence of primary drug resistance mutations using CodonCode Aligner Software. The phylogenetic analyses indicated that all sequences were found to be the HBV subgenotype F1b, clustered into four different groups, suggesting that diverse lineages of this subgenotype may be circulating within this population of Chilean patients. J. Med. Virol. 83: 1530-1536, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.
Resumo:
The Bell-Lavis model for liquid water is investigated through numerical simulations. The lattice-gas model on a triangular lattice presents orientational states and is known to present a highly bonded low density phase and a loosely bonded high density phase. We show that the model liquid-liquid transition is continuous, in contradiction with mean-field results on the Husimi cactus and from the cluster variational method. We define an order parameter which allows interpretation of the transition as an order-disorder transition of the bond network. Our results indicate that the order-disorder transition is in the Ising universality class. Previous proposal of an Ehrenfest second order transition is discarded. A detailed investigation of anomalous properties has also been undertaken. The line of density maxima in the HDL phase is stabilized by fluctuations, absent in the mean-field solution. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253297]
Resumo:
We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonlinear filter is infinite dimensional, which makes the linear filtering a natural numerically, treatable choice. The goal is to design a dynamic linear filter such that the closed loop system is mean square stable and minimizes the stationary expected value of the mean square estimation error. It is shown that an explicit analytical solution to this optimal filtering problem is obtained from the stationary solution associated to a certain Riccati equation. It is also shown that the problem can be formulated using a linear matrix inequalities (LMI) approach, which can be extended to consider convex polytopic uncertainties on the parameters of the possible modes of operation of the system and on the transition rate matrix of the Markov process. As far as the authors are aware of this is the first time that this stationary filtering problem (exact and robust versions) for LSMJP with no knowledge of the Markov jump parameters is considered in the literature. Finally, we illustrate the results with an example.
Resumo:
This paper analyzes the geography of regional competitiveness in manufacturing in Brazil. The authors estimate stochastic frontiers to calculate regional efficiency of representative firms in 137 regions in the period 2000-2006, in four sectors defined by technological intensity. The efficiency results are analyzed using Markov Spatial Transition Matrices to provide insights into the transition of regions between efficiency levels, considering their local spatial context. The results indicate that geography plays an important role in manufacturing competitiveness. In particular, regions with more competitive neighbors are more likely to improve their relative efficiency (pull effect) over time, and regions with less competitive neighbors are more likely to lose relative efficiency (drag effect). The authors find that the pull effect is stronger than the drag effect.