23 resultados para Confederate States of America. Army. 2d Louisiana Brigade
Resumo:
Small GTPase Rab is a member of a large family of Ras-related proteins, highly conserved in eukaryotic cells, and thought to regulate specific type(s) and/or specific step(s) in intracellular membrane trafficking. Given our interest in synaptic transmission, we addressed the possibility that Rab27 (a close isoform of Rab3) could be involved in cytosolic synaptic vesicle mobilization. Indeed, preterminal injection of a specific antibody against squid Rab27 (anti-sqRab27 antibody) combined with confocal microscopy demonstrated that Rab27 is present on squid synaptic vesicles. Electrophysiological study of injected synapses showed that the anti-sqRab27 antibody inhibited synaptic release in a stimulation-dependent manner without affecting presynaptic action potentials or inward Ca2+ current. This result was confirmed in in vitro synaptosomes by using total internal reflection fluorescence microscopy. Thus, synaptosomal Ca2+-stimulated release of FM1-43 dye was greatly impaired by intraterminal anti-sqRab27 antibody. Ultrastructural analysis of the injected giant preterminal further showed a reduced number of docked synaptic vesicles and an increase in nondocked vesicular profiles distant from the active zone. These results, taken together, indicate that Rab27 is primarily involved in the maturation of recycled vesicles and/or their transport to the presynaptic active zone in the squid giant synapse.
Resumo:
Sera from 269 rodents obtained during the routine surveillance operations in plague areas of Rio de Janeiro and Pernambuco states, Brazil were tested by ELISA for specific IgG antibodies against a recombinant nucleocapsid (N) protein of Araraquara hantavirus. ELISA-positive sera were submitted to reverse transcriptase-polymerase chain reaction (RT-PCR) for amplification of the virus genome and later sequencing for identification of the viral variant. The samples from the state of Pernambuco were antibody negative, and although four from Rio de Janeiro were ELISA-positive, they failed to yield viral cDNA by RT-PCR. This is the first report of the presence of antibodies to a hantavirus among rodents from Rio de Janeiro and suggests the possibility of human cases of hantavirus pulmonary syndrome (HPS) in that state, although no case has yet been reported. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Patients with sepsis have a marked defect in neutrophil migration. Here we identify a key role of Toll-like receptor 2 (TLR2) in the regulation of neutrophil migration and resistance during polymicrobial sepsis. We found that the expression of the chemokine receptor CXCR2 was dramatically down-regulated in circulating neutrophils from WT mice with severe sepsis, which correlates with reduced chemotaxis to CXCL2 in vitro and impaired migration into an infectious focus in vivo. TLR2 deficiency prevented the down-regulation of CXCR2 and failure of neutrophil migration. Moreover, TLR2(-/-) mice exhibited higher bacterial clearance, lower serum inflammatory cytokines, and improved survival rate during severe sepsis compared with WT mice. In vitro, the TLR2 agonist lipoteichoic acid (LTA) down-regulated CXCR2 expression and markedly inhibited the neutrophil chemotaxis and actin polymerization induced by CXCL2. Moreover, neutrophils activated ex vivo by LTA and adoptively transferred into naive WT recipient mice displayed a significantly reduced competence to migrate toward thioglycolate-induced peritonitis. Finally, LTA enhanced the expression of G protein-coupled receptor kinases 2 (GRK2) in neutrophils; increased expression of GRK2 was seen in blood neutrophils from WT mice, but not TLR2(-/-) mice, with severe sepsis. Our findings identify an unexpected detrimental role of TLR2 in polymicrobial sepsis and suggest that inhibition of TLR2 signaling may improve survival from sepsis.
Resumo:
Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2(-/-)) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants.
Resumo:
Previous work from our group showed that intrathecal (i.t.) administration of substances such as glutamate, NMDA, or PGE(2) induced sensitization of the primary nociceptive neuron (PNN hypernociception) that was inhibited by a distal intraplantar (i.pl.) injection of either morphine or dipyrone. This pharmacodynamic phenomenon is referred to in the present work as ""teleantagonism``. We previously observed that the antinociceptive effect of i.t. morphine could be blocked by injecting inhibitors of the NO signaling pathway in the paw (i.pl.), and this effect was used to explain the mechanism of opioid-induced peripheral analgesia by i.t. administration. The objective of the present investigation was to determine whether this teleantagonism phenomenon was specific to this biochemical pathway (NO) or was a general property of the PNNs. Teleantagonism was investigated by administering test substances to the two ends of the PNN (i.e., to distal and proximal terminals; i.pl. plus i.t. or i.t. plus i.pl. injections). We found teleantagonism when: (i) inhibitors of the NO signaling pathway were injected distally during the antinociception induced by opioid agonists; (ii) a nonselective COX inhibitor was tested against PNN sensitization by IL-1 beta; (iii) selective opioid-receptor antagonists tested against antinociception induced by corresponding selective agonists. Although the dorsal root ganglion seems to be an important site for drug interactions, the teleantagonism phenomenon suggests that, in PNNs, a local sensitization spreads to the entire cell and constitutes an intriguing and not yet completely understood pharmacodynamic property of this group of neurons.
Resumo:
The ability of an individual to sense pain is fundamental for its capacity to adapt to its environment and to avoid damage. The sensation of pain can be enhanced by acute or chronic inflammation. In the present study, we have investigated whether inflammatory pain, as measured by hypernociceptive responses, was modified in the absence of the microbiota. To this end, we evaluated mechanical nociceptive responses induced by a range of inflammatory stimuli in germ-free and conventional mice. Our experiments show that inflammatory hypernociception induced by carrageenan, lipopolysaccharide, TNF-alpha, IL-1 beta, and the chemokine CXCL1 was reduced in germfree mice. In contrast, hypernociception induced by prostaglandins and dopamine was similar in germ-free or conventional mice. Reduction of hypernociception induced by carrageenan was associated with reduced tissue inflammation and could be reversed by reposition of the microbiota or systemic administration of lipopolysaccharide. Significantly, decreased hypernociception in germ-free mice was accompanied by enhanced IL-10 expression upon stimulation and could be reversed by treatment with an anti-IL-10 antibody. Therefore, these results show that contact with commensal microbiota is necessary for mice to develop inflammatory hypernociception. These findings implicate an important role of the interaction between the commensal microbiota and the host in favoring adaptation to environmental stresses, including those that cause pain.
Resumo:
Severe dengue infection in humans causes a disease characterized by thrombocytopenia, increased levels of cytokines, increased vascular permeability, hemorrhage, and shock. Treatment is supportive. Activation of platelet-activating factor (PAF) receptor (PAFR) on endothelial cells and leukocytes induces increase in vascular permeability, hypotension, and production of cytokines. We hypothesized that activation of PAFR could account for the major systemic manifestations of dengue infection. Inoculation of adult mice with an adapted strain of Dengue virus caused a systemic disease, with several features of the infection in humans. In PAFR(-/-) mice, there was decreased thrombocytopenia, hemoconcentration, decreased systemic levels of cytokines, and delay of lethality, when compared with WT infected mice. Treatment with UK-74,505, an orally active PAFR antagonist, prevented the above-mentioned manifestations, as well as hypotension and increased vascular permeability, and decreased lethality, even when started 5 days after virus inoculation. Similar results were obtained with a distinct PAFR antagonist, PCA-4246. Despite decreased disease manifestation, viral loads were similar (PAFR(-/-)) or lower (PAFR antagonist) than in WT mice. Thus, activation of PAFR plays a major role in the pathogenesis of experimental dengue infection, and its blockade prevents more severe disease manifestation after infection with no increase in systemic viral titers, suggesting that there is no interference in the ability of the murine host to deal with the infection. PAFR antagonists are disease-modifying agents in experimental dengue infection.
Resumo:
In many adult tissues, mesenchymal stem cells (MSCs) are closely associated with perivascular niches and coexpress many markers in common with pericytes. The ability of pericytes to act as MSCs, however, remains controversial. By using genetic lineage tracing, we show that some pericytes differentiate into specialized tooth mesenchyme-derived cells-odontoblasts-during tooth growth and in response to damage in vivo. As the pericyte-derived mesenchymal cell contribution to odontoblast differentiation does not account for all cell differentiation, we identify an additional source of cells with MSC-like properties that are stimulated to migrate toward areas of tissue damage and differentiate into odontoblasts. Thus, although pericytes are capable of acting as a source of MSCs and differentiating into cells of mesenchymal origin, they do so alongside other MSCs of a nonpericyte origin. This study identifies a dual origin of MSCs in a single tissue and suggests that the pericyte contribution to MSC-derived mesenchymal cells in any given tissue is variable and possibly dependent on the extent of the vascularity.