32 resultados para Computer network management


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Current advances in frame modeling and computer software allow stereotactic procedures to be performed with great accuracy and minimal risk of neural tissue or vascular injury. Case Report: In this report we associate a previously described minimally invasive stereotactic technique with state-of-the-art 3D computer guidance technology to successfully treat a 55-year-old patient with an arachnoidal cyst obstructing the aqueduct of Sylvius. We provide 1 detailed technical information and discuss how this technique deals with previous limitations for stereotactic manipulation of the aqueductal region. We further discuss current advances in neuroendoscopy for treating obstructive hydrocephalus and make comparisons with our proposed technique. Conclusion: We advocate that this technique is not only capable of treating this pathology but it also has the advantages to enable reestablishment of physiological CSF flow thus preventing future brainstem compression by cyst enlargement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The objective of this study is to evaluate blood glucose (BG) control efficacy and safety of 3 insulin protocols in medical intensive care unit (MICU) patients. Methods: This was a multicenter randomized controlled trial involving 167 MICU patients with at least one BG measurement +/- 150 mg/dL and one or more of the following: mechanical ventilation, systemic inflammatory response syndrome, trauma, or burns. The interventions were computer-assisted insulin protocol (CAIP), with insulin infusion maintaining BG between 100 and 130 mg/dL; Leuven protocol, with insulin maintaining BG between 80 and 110 mg/dL; or conventional treatment-subcutaneous insulin if glucose > 150 mg/dL. The main efficacy outcome was the mean of patients` median BG, and the safety outcome was the incidence of hypoglycemia (<= 40 mg/dL). Results: The mean of patients` median BG was 125.0, 127.1, and 158.5 mg/dL for CAIP, Leuven, and conventional treatment, respectively (P = .34, CAIP vs Leuven; P < .001, CAIP vs conventional). In CAIP, 12 patients (21.4%) had at least one episode of hypoglycemia vs 24 (41.4%) in Leuven and 2 (3.8%) in conventional treatment (P = .02, CAIP vs Leuven; P = .006, CAIP vs conventional). Conclusions: The CAIP is safer than and as effective as the standard strict protocol for controlling glucose in MICU patients. Hypoglycemia was rare under conventional treatment. However, BG levels were higher than with IV insulin protocols. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work analyzes high-resolution precipitation data from satellite-derived rainfall estimates over South America, especially over the Amazon Basin. The goal is to examine whether satellite-derived precipitation estimates can be used in hydrology and in the management of larger watersheds of South America. High spatial-temporal resolution precipitation estimates obtained with the CMORPH method serve this purpose while providing an additional hydrometeorological perspective on the convective regime over South America and its predictability. CMORPH rainfall estimates at 8-km spatial resolution for 2003 and 2004 were compared with available rain gauge measurements at daily, monthly, and yearly accumulation time scales. The results show the correlation between satellite-derived and gauge-measured precipitation increases with accumulation period from daily to monthly, especially during the rainy season. Time-longitude diagrams of CMORPH hourly rainfall show the genesis, strength, longevity, and phase speed of convective systems. Hourly rainfall analyses indicate that convection over the Amazon region is often more organized than previously thought, thus inferring that basin scale predictions of rainfall for hydrological and water management purposes have the potential to become more skillful. Flow estimates based on CMORPH and the rain gauge network are compared to long-term observed average flow. The results suggest this satellite-based rainfall estimation technique has considerable utility. Other statistics for monthly accumulations also suggest CMORPH can be an important source of rainfall information at smaller spatial scales where in situ observations are lacking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experts from six Latin American countries met to discuss critical issues and needs in the diagnosis and management of primary immunodeficiency diseases (PIDD). The diagnosis of PIDD is generally made following referral to an immunology centre located in a major city, but many paediatricians and general practitioners are not sufficiently trained to suspect PIDD in the first place. Access to laboratory testing is generally limited, and only some screening tests are typically covered by government health programmes. Specialised diagnostic tests are generally not reimbursed. Access to treatment varies by country reflecting differences in healthcare systems and reimbursement policies. An online PIDD Registry Programme for Latin America has been available since 2009, which will provide information about PIDD epidemiology in the region. Additional collaboration across countries appears feasible in at least two areas: a laboratory network to facilitate the diagnosis of PIDD, and educational programmes to improve PIDD awareness. In total, these collaborations should make it possible to advance the diagnosis and management of PIDD in Latin America. (C) 2010 SEICAP. Published by Elsevier Espana, S.L. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes and discusses an approach for inducing Bayesian classifiers aimed at balancing the tradeoff between the precise probability estimates produced by time consuming unrestricted Bayesian networks and the computational efficiency of Naive Bayes (NB) classifiers. The proposed approach is based on the fundamental principles of the Heuristic Search Bayesian network learning. The Markov Blanket concept, as well as a proposed ""approximate Markov Blanket"" are used to reduce the number of nodes that form the Bayesian network to be induced from data. Consequently, the usually high computational cost of the heuristic search learning algorithms can be lessened, while Bayesian network structures better than NB can be achieved. The resulting algorithms, called DMBC (Dynamic Markov Blanket Classifier) and A-DMBC (Approximate DMBC), are empirically assessed in twelve domains that illustrate scenarios of particular interest. The obtained results are compared with NB and Tree Augmented Network (TAN) classifiers, and confinn that both proposed algorithms can provide good classification accuracies and better probability estimates than NB and TAN, while being more computationally efficient than the widely used K2 Algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the two-level network design problem with intermediate facilities. This problem consists of designing a minimum cost network respecting some requirements, usually described in terms of the network topology or in terms of a desired flow of commodities between source and destination vertices. Each selected link must receive one of two types of edge facilities and the connection of different edge facilities requires a costly and capacitated vertex facility. We propose a hybrid decomposition approach which heuristically obtains tentative solutions for the vertex facilities number and location and use these solutions to limit the computational burden of a branch-and-cut algorithm. We test our method on instances of the power system secondary distribution network design problem. The results show that the method is efficient both in terms of solution quality and computational times. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solving multicommodity capacitated network design problems is a hard task that requires the use of several strategies like relaxing some constraints and strengthening the model with valid inequalities. In this paper, we compare three sets of inequalities that have been widely used in this context: Benders, metric and cutset inequalities. We show that Benders inequalities associated to extreme rays are metric inequalities. We also show how to strengthen Benders inequalities associated to non-extreme rays to obtain metric inequalities. We show that cutset inequalities are Benders inequalities, but not necessarily metric inequalities. We give a necessary and sufficient condition for a cutset inequality to be a metric inequality. Computational experiments show the effectiveness of strengthening Benders and cutset inequalities to obtain metric inequalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Object selection refers to the mechanism of extracting objects of interest while ignoring other objects and background in a given visual scene. It is a fundamental issue for many computer vision and image analysis techniques and it is still a challenging task to artificial Visual systems. Chaotic phase synchronization takes place in cases involving almost identical dynamical systems and it means that the phase difference between the systems is kept bounded over the time, while their amplitudes remain chaotic and may be uncorrelated. Instead of complete synchronization, phase synchronization is believed to be a mechanism for neural integration in brain. In this paper, an object selection model is proposed. Oscillators in the network representing the salient object in a given scene are phase synchronized, while no phase synchronization occurs for background objects. In this way, the salient object can be extracted. In this model, a shift mechanism is also introduced to change attention from one object to another. Computer simulations show that the model produces some results similar to those observed in natural vision systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological systems have facility to capture salient object(s) in a given scene, but it is still a difficult task to be accomplished by artificial vision systems. In this paper a visual selection mechanism based on the integrate and fire neural network is proposed. The model not only can discriminate objects in a given visual scene, but also can deliver focus of attention to the salient object. Moreover, it processes a combination of relevant features of an input scene, such as intensity, color, orientation, and the contrast of them. In comparison to other visual selection approaches, this model presents several interesting features. It is able to capture attention of objects in complex forms, including those linearly nonseparable. Moreover, computer simulations show that the model produces results similar to those observed in natural vision systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chaotic synchronization has been discovered to be an important property of neural activities, which in turn has encouraged many researchers to develop chaotic neural networks for scene and data analysis. In this paper, we study the synchronization role of coupled chaotic oscillators in networks of general topology. Specifically, a rigorous proof is presented to show that a large number of oscillators with arbitrary geometrical connections can be synchronized by providing a sufficiently strong coupling strength. Moreover, the results presented in this paper not only are valid to a wide class of chaotic oscillators, but also cover the parameter mismatch case. Finally, we show how the obtained result can be applied to construct an oscillatory network for scene segmentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sznajd model (SM) has been employed with success in the last years to describe opinion propagation in a community. In particular, it has been claimed that its transient is able to reproduce some scale properties observed in data of proportional elections, in different countries, if the community structure (the network) is scale-free. In this work, we investigate the properties of the transient of a particular version of the SM, introduced by Bernardes and co-authors in 2002. We studied the behavior of the model in networks of different topologies through the time evolution of an order parameter known as interface density, and concluded that regular lattices with high dimensionality also leads to a power-law distribution of the number of candidates with v votes. Also, we show that the particular absorbing state achieved in the stationary state (or else, the winner candidate), is related to a particular feature of the model, that may not be realistic in all situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shape provides one of the most relevant information about an object. This makes shape one of the most important visual attributes used to characterize objects. This paper introduces a novel approach for shape characterization, which combines modeling shape into a complex network and the analysis of its complexity in a dynamic evolution context. Descriptors computed through this approach show to be efficient in shape characterization, incorporating many characteristics, such as scale and rotation invariant. Experiments using two different shape databases (an artificial shapes database and a leaf shape database) are presented in order to evaluate the method. and its results are compared to traditional shape analysis methods found in literature. (C) 2009 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic summarization of texts is now crucial for several information retrieval tasks owing to the huge amount of information available in digital media, which has increased the demand for simple, language-independent extractive summarization strategies. In this paper, we employ concepts and metrics of complex networks to select sentences for an extractive summary. The graph or network representing one piece of text consists of nodes corresponding to sentences, while edges connect sentences that share common meaningful nouns. Because various metrics could be used, we developed a set of 14 summarizers, generically referred to as CN-Summ, employing network concepts such as node degree, length of shortest paths, d-rings and k-cores. An additional summarizer was created which selects the highest ranked sentences in the 14 systems, as in a voting system. When applied to a corpus of Brazilian Portuguese texts, some CN-Summ versions performed better than summarizers that do not employ deep linguistic knowledge, with results comparable to state-of-the-art summarizers based on expensive linguistic resources. The use of complex networks to represent texts appears therefore as suitable for automatic summarization, consistent with the belief that the metrics of such networks may capture important text features. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a novel methodology to shape boundary characterization, where a shape is modeled into a small-world complex network. It uses degree and joint degree measurements in a dynamic evolution network to compose a set of shape descriptors. The proposed shape characterization method has all efficient power of shape characterization, it is robust, noise tolerant, scale invariant and rotation invariant. A leaf plant classification experiment is presented on three image databases in order to evaluate the method and compare it with other descriptors in the literature (Fourier descriptors, Curvature, Zernike moments and multiscale fractal dimension). (C) 2008 Elsevier Ltd. All rights reserved.