41 resultados para Circle-squaring
Resumo:
We recently predicted the existence of random primordial magnetic fields (RPMFs) in the form of randomly oriented cells with dipole-like structure with a cell size L(0) and an average magnetic field B(0). Here, we investigate models for primordial magnetic field with a similar web-like structure, and other geometries, differing perhaps in L(0) and B(0). The effect of RPMF on the formation of the first galaxies is investigated. The filtering mass, M(F), is the halo mass below which baryon accretion is severely depressed. We show that these RPMF could influence the formation of galaxies by altering the filtering mass and the baryon gas fraction of a halo, f(g). The effect is particularly strong in small galaxies. We find, for example, for a comoving B(0) = 0.1 mu G, and a reionization epoch that starts at z(s) = 11 and ends at z(e) = 8, for L(0) = 100 pc at z = 12, the f(g) becomes severely depressed for M < 10(7) M(circle dot), whereas for B(0) = 0 the f(g) becomes severely depressed only for much smaller masses, M < 10(5) M(circle dot). We suggest that the observation of M(F) and f(g) at high redshifts can give information on the intensity and structure of primordial magnetic fields.
Resumo:
We report the first simultaneous zJHK spectroscopy on the archetypical Seyfert 2 galaxy NGC 1068 covering the wavelength region 0.9-2.4 mu m. The slit, aligned in the north-south direction and centred in the optical nucleus, maps a region 300 pc in radius at subarcsec resolution, with a spectral resolving power of 360 km s-1. This configuration allows us to study the physical properties of the nuclear gas including that of the north side of the ionization cone, map the strong excess of continuum emission in the K band and attributed to dust and study the variations, both in flux and profile, in the emission lines. Our results show the following. (1) Mid- to low-ionization emission lines are split into two components, whose relative strengths vary with the position along the slit and seem to be correlated with the jet. (2) The coronal lines are single-peaked and are detected only in the central few hundred of pc from the nucleus. (3) The absorption lines indicate the presence of intermediate age stellar population, which might be a significant contributor to the continuum in the near-IR spectra. (4) Through some simple photoionization models we find photoionization as the main mechanism powering the emitting gas. (5) Calculations using stellar features point to a mass concentration inside the 100-200 pc of about 1010 M(circle dot).
Resumo:
We investigate the impact of the existence of a primordial magnetic field on the filter mass, characterizing the minimum baryonic mass that can form in dark matter (DM) haloes. For masses below the filter mass, the baryon content of DM haloes are severely depressed. The filter mass is the mass when the baryon to DM mass ratio in a halo is equal to half the baryon to DM ratio of the Universe. The filter mass has previously been used in semi-analytic calculations of galaxy formation, without taking into account the possible existence of a primordial magnetic field. We examine here its effect on the filter mass. For homogeneous comoving primordial magnetic fields of B(0) similar to 1 or 2 nG and a re-ionization epoch that starts at a redshift z(s) = 11 and is completed at z(r) = 8, the filter mass is increased at redshift 8, for example, by factors of 4.1 and 19.8, respectively. The dependence of the filter mass on the parameters describing the re-ionization epoch is investigated. Our results are particularly important for the formation of low-mass galaxies in the presence of a homogeneous primordial magnetic field. For example, for B(0) similar to 1 nG and a re-ionization epoch of z(s) similar to 11 and z(r) similar to 7, our results indicate that galaxies of total mass M similar to 5 x 108 M(circle dot) need to form at redshifts z(F) greater than or similar to 2.0, and galaxies of total mass M similar to 108 M(circle dot) at redshifts z(F) greater than or similar to 7.7.
Resumo:
The Large Magellanic Cloud (LMC) has a rich star cluster system spanning a wide range of ages and masses. One striking feature of the LMC cluster system is the existence of an age gap between 3 and 10 Gyr. But this feature is not clearly seen among field stars. Three LMC fields containing relatively poor and sparse clusters whose integrated colours are consistent with those of intermediate-age simple stellar populations have been imaged in BVI with the Optical Imager (SOI) at the Southern Telescope for Astrophysical Research (SOAR). A total of six clusters, five of them with estimated initial masses M < 104 M(circle dot), were studied in these fields. Photometry was performed and colour-magnitude diagrams (CMDs) were built using standard point spread function fitting methods. The faintest stars measured reach V similar to 23. The CMD was cleaned from field contamination by making use of the three-dimensional colour and magnitude space available in order to select stars in excess relative to the field. A statistical CMD comparison method was developed for this purpose. The subtraction method has proven to be successful, yielding cleaned CMDs consistent with a simple stellar population. The intermediate-age candidates were found to be the oldest in our sample, with ages between 1 and 2 Gyr. The remaining clusters found in the SOAR/SOI have ages ranging from 100 to 200 Myr. Our analysis has conclusively shown that none of the relatively low-mass clusters studied by us belongs to the LMC age gap.
Resumo:
Recently, it has been proposed that there are two type Ia supernova progenitors: short-lived and long-lived. On the basis of this idea, we develop a theory of a unified mechanism for the formation of the bimodal radial distribution of iron and oxygen in the Galactic disc. The underlying cause for the formation of the fine structure of the radial abundance pattern is the influence of the spiral arms, specifically the combined effect of the corotation resonance and turbulent diffusion. From our modelling, we conclude that in order to explain the bimodal radial distributions simultaneously for oxygen and iron and to obtain approximately equal total iron output from different types of supernovae, the mean ejected iron mass per supernova event should be the same as quoted in the literature if the maximum mass of stars, which eject heavy elements, is 50 M(circle dot). For the upper mass limit of 70 M(circle dot), the production of iron by a type II supernova explosion should increase by about 1.5 times.
Resumo:
We used the H i data from the LAB Survey to map the ring-shaped gap in H i density that lies slightly outside the solar circle. Adopting R(0) = 7.5 kpc, we find an average gap radius of 8.3 kpc and an average gap width of 0.8 kpc. The characteristics of the H i gap correspond closely to the expected ones, as predicted by theory and by numerical simulations of the gas flow near the corotation resonance.
Resumo:
Here we investigate the contribution of surface Alfven wave damping to the heating of the solar wind in minima conditions. These waves are present in the regions of strong inhomogeneities in density or magnetic field (e.g., the border between open and closed magnetic field lines). Using a three-dimensional (3D) magnetohydrodynamics (MHD) model, we calculate the surface Alfven wave damping contribution between 1 and 4 R(circle dot) (solar radii), the region of interest for both acceleration and coronal heating. We consider waves with frequencies lower than those that are damped in the chromosphere and on the order of those dominating the heliosphere: 3 x 10(-6) to 10(-1) Hz. In the region between open and closed field lines, within a few R(circle dot) of the surface, no other major source of damping has been suggested for the low frequency waves we consider here. This work is the first to study surface Alfven waves in a 3D environment without assuming a priori a geometry of field lines or magnetic and density profiles. We demonstrate that projection effects from the plane of the sky to 3D are significant in the calculation of field line expansion. We determine that waves with frequencies >2.8 x 10(-4) Hz are damped between 1 and 4 R(circle dot). In quiet-Sun regions, surface Alfven waves are damped at further distances compared to active regions, thus carrying additional wave energy into the corona. We compare the surface Alfven wave contribution to the heating by a variable polytropic index and find it as an order of magnitude larger than needed for quiet-Sun regions. For active regions, the contribution to the heating is 20%. As it has been argued that a variable gamma acts as turbulence, our results indicate that surface Alfven wave damping is comparable to turbulence in the lower corona. This damping mechanism should be included self-consistently as an energy driver for the wind in global MHD models.
Resumo:
FS CMa type stars are a group of Galactic objects with the B[e] phenomenon. They exhibit strong emission-line spectra and infrared excesses, which are most likely due to recently formed circumstellar dust. The group content and identification criteria were described in the first two papers of the series. In this paper we report our spectroscopic and photometric observations of the optical counterpart of IRAS 00470+6429 obtained in 2003-2008. The optical spectrum is dominated by emission lines, most of which have P Cyg type profiles. We detected significant brightness variations, which may include a regular component, and variable spectral line profiles in both shape and position. The presence of a weak Li I 6708 angstrom line in the spectrum suggests that the object is most likely a binary system with a B2-B3 spectral-type primary companion of a luminosity log L/L(circle dot) = 3.9 +/- 0.3 and a late-type secondary companion. We estimate a distance toward the object to be 2.0 +/- 0.3 kpc from the Sun.
Resumo:
We obtained long-slit spectra of high signal-to-noise ratio of the galaxy M32 with the Gemini Multi-Object Spectrograph at the Gemini-North telescope. We analysed the integrated spectra by means of full spectral fitting in order to extract the mixture of stellar populations that best represents its composite nature. Three different galactic radii were analysed, from the nuclear region out to 2 arcmin from the centre. This allows us to compare, for the first time, the results of integrated light spectroscopy with those of resolved colour-magnitude diagrams from the literature. As a main result we propose that an ancient and an intermediate-age population co-exist in M32, and that the balance between these two populations change between the nucleus and outside one effective radius (1r(eff)) in the sense that the contribution from the intermediate population is larger at the nuclear region. We retrieve a smaller signal of a young population at all radii whose origin is unclear and may be a contamination from horizontal branch stars, such as the ones identified by Brown et al. in the nuclear region. We compare our metallicity distribution function for a region 1 to 2 arcmin from the centre to the one obtained with photometric data by Grillmair et al. Both distributions are broad, but our spectroscopically derived distribution has a significant component with [Z/Z(circle dot)] <= -1, which is not found by Grillmair et al.
Resumo:
We show that the significantly different effective temperatures (T(eff)) achieved by the luminous blue variable AG Carinae during the consecutive visual minima of 1985-1990 (T(eff) similar or equal to 22,800 K) and 2000-2001 (T(eff) similar or equal to 17,000 K) place the star on different sides of the bistability limit, which occurs in line-driven stellar winds around T(eff) similar to 21,000 K. Decisive evidence is provided by huge changes in the optical depth of the Lyman continuum in the inner wind as T(eff) changes during the S Dor cycle. These changes cause different Fe ionization structures in the inner wind. The bistability mechanism is also related to the different wind parameters during visual minima: the wind terminal velocity was 2-3 times higher and the mass-loss rate roughly two times smaller in 1985-1990 than in 2000-2003. We obtain a projected rotational velocity of 220 +/- 50 km s(-1) during 1985-1990 which, combined with the high luminosity (L(star) = 1.5 x 10(6) L(circle dot)), puts AG Car extremely close to the Eddington limit modified by rotation (Omega Gamma limit): for an inclination angle of 90 degrees, Gamma(Omega) greater than or similar to 1.0 for M(circle dot) less than or similar to 60. Based on evolutionary models and mass budget, we obtain an initial mass of similar to 100 M(circle dot) and a current mass of similar to 60-70 M(circle dot) for AG Car. Therefore, AG Car is close to, if not at, the Omega Gamma limit during visual minimum. Assuming M = 70 M(circle dot), we find that Gamma(Omega) decreases from 0.93 to 0.72 as AG Car expands toward visual maximum, suggesting that the star is not above the Eddington limit during maximum phases.
Resumo:
We have obtained the mass-metallicity (M-Z) relation at different lookback times for the same set of galaxies from the Sloan Digital Sky Survey, using the stellar metallicities estimated with our spectral synthesis code STARLIGHT. We have found that this relation steepens and spans a wider range in both mass and metallicity at higher redshifts. We have modelled the time evolution of stellar metallicity with a closed-box chemical evolution model, for galaxies of different types and masses. Our results suggest that the M-Z relation for galaxies with present-day stellar masses down to 10(10) M(circle dot) is mainly driven by the history of star formation and not by inflows or outflows.
Resumo:
In this paper, we consider codimension one Anosov actions of R(k), k >= 1, on closed connected orientable manifolds of dimension n vertical bar k with n >= 3. We show that the fundamental group of the ambient manifold is solvable if and only if the weak foliation of codimension one is transversely affine. We also study the situation where one 1-parameter subgroup of R(k) admits a cross-section, and compare this to the case where the whole action is transverse to a fibration over a manifold of dimension n. As a byproduct, generalizing a Theorem by Ghys in the case k = 1, we show that, under some assumptions about the smoothness of the sub-bundle E(ss) circle plus E(uu), and in the case where the action preserves the volume, it is topologically equivalent to a suspension of a linear Anosov action of Z(k) on T(n).
Resumo:
In the analysis of stability of a variant of the Crank-Nicolson (C-N) method for the heat equation on a staggered grid a class of non-symmetric matrices appear that have an interesting property: their eigenvalues are all real and lie within the unit circle. In this note we shall show how this class of matrices is derived from the C-N method and prove that their eigenvalues are inside [-1, 1] for all values of m (the order of the matrix) and all values of a positive parameter a, the stability parameter sigma. As the order of the matrix is general, and the parameter sigma lies on the positive real line this class of matrices turns out to be quite general and could be of interest as a test set for eigenvalue solvers, especially as examples of very large matrices. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A solution to a version of the Stieltjes moment. problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Cross sections for the (6)Li(p,gamma)(7)Be, (7)Li(n,gamma)(8)Li (8)Li(n,gamma)(9)Li and (8)Li(p,gamma)(9)Be capture reactions have been investigated in the framework of the potential model. The main ingredients of the potential model are the potentials used to generate the continuum and bound-state wave functions and spectroscopic factors of the corresponding bound systems. The spectroscopic factors for the (7)Li circle times n=(8)Li(gs), (8)Li circle times n=(9)Li(gs) bound systems were obtained from a FR-DWBA analysis of neutron transfer reactions induced by (8)Li radioactive beam on a (9)Be target, while spetroscopic factor for the (8)Li circle times n=(9)Be(gs) bound system were obained from a proton transfer reaction. From the obtained capture reaction cross section, reaction rate for the (8)Li(n,gamma)(9)Li and (8)Li(p,gamma)(9)Be direct neutron and proton capture were determined and compared with other experimental and calculated values.