16 resultados para COPY-NUMBER VARIATIONS
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (15)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (3)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (25)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (16)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (48)
- Boston University Digital Common (8)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (16)
- Center for Jewish History Digital Collections (23)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (6)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (6)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (13)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (13)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (17)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (47)
- Indian Institute of Science - Bangalore - Índia (41)
- Instituto Gulbenkian de Ciência (1)
- Instituto Nacional de Saúde de Portugal (7)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (55)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (20)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (31)
- Queensland University of Technology - ePrints Archive (317)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (71)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (4)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (14)
- Université de Montréal (1)
- Université de Montréal, Canada (11)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (18)
- University of Queensland eSpace - Australia (9)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Denote by R(L, L, L) the minimum integer N such that any 3-coloring of the edges of the complete graph on N vertices contains a monochromatic copy of a graph L. Bondy and Erdos conjectured that when L is the cycle C(n) on n vertices, R(C(n), C(n), C(n)) = 4n - 3 for every odd n > 3. Luczak proved that if n is odd, then R(C(n), C(n), C(n)) = 4n + o(n), as n -> infinity, and Kohayakawa, Simonovits and Skokan confirmed the Bondy-Erdos conjecture for all sufficiently large values of n. Figaj and Luczak determined an asymptotic result for the `complementary` case where the cycles are even: they showed that for even n, we have R(C(n), C(n), C(n)) = 2n + o(n), as n -> infinity. In this paper, we prove that there exists n I such that for every even n >= n(1), R(C(n), C(n), C(n)) = 2n. (C) 2009 Elsevier Inc. All rights reserved.