62 resultados para CHROMIUM COMPOUNDS
Resumo:
The effect of Cr(6+) on Allium cepa root length was studied using both clean and polluted river waters. Seven series of Cr(6+)-doped polluted and non-polluted river waters were used to grow onions. Chromium concentration (Cr(6+)) of 4.2 mg L(-1)(EC(50) value), doped in clean river water caused a 50% reduction of root length, while in organically polluted samples similar root growth inhibition occurred at 12.0 mg Cr(6+) L(-1). The results suggested that there was a dislocation to higher values in toxic chromium concentration in polluted river water due to the eutrophization level of river water.
Resumo:
The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr(6+) mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the present work, the trivalent and hexavalent chromium phytoaccumulation by three living free floating aquatic macrophytes Salvinia auriculata, Pistia stratiotes, and Eicchornia crassipes was investigated in greenhouse. These plants were grown in hydroponic solutions supplied with non-toxic Cr3+ and Cr6+ chromium concentrations, performing six collections of nutrient media and plants in time from a batch system. The total chromium concentrations into Cr-doped hydroponic media and dry roots and aerial parts were assayed, by using the Synchrotron radiation X-ray fluorescence technique. The aquatic plant-based chromium removal data were described by using a nonstructural kinetic model, obtaining different bioaccumulation rate, ranging from 0.015 to 0.837 1 mg(-1) d(-1). The Cr3+ removal efficiency was about 90%, 50%, and 90% for the E. crassipes, P. stratiotes, and S. auriculata, respectively; while it was rather different for Cr6+ one, with values about 50%, 70%, and 90% for the E. crassipes, P. stratiotes, and S. auriculata.
Resumo:
Boron compounds are widely used in synthetic chemistry. The synthesis of the compounds is relatively easy, presenting thermodynamic stability and synthetic versatility. Almost all of them show electrophilic reactivity. Recently, some boryllithium species have been reported as a base or a nucleophile in reaction with organic electrophiles in S(N)2 reactions. In the present work, the proton affinity (PA) of boryllithium compounds was calculated. These values can be useful as theoretical reference values and to provide valuable complementary information for the interpretation and discussion of the basicity of these compounds. The proton affinity was calculated using a theoretical method based on density functional theory and high-level theoretical methods through MP2 and G2MP2 levels of theory. In addition, some global and local reactivity indexes based on density functional theory (DFT) on boryllithium compounds were studied. In order to compare and discuss the chemical reactivity of these compounds, some analogues and electrophilic boron compounds were also studied. Our results showed a local and global nucleophilic reactivity of the boryllithium molecules in agreement with the experimental. reactivity. The boryllithium compounds revealed to be strong bases in comparison to other analogue compounds studied in this work.
Resumo:
In this work, we investigate the control of the two-photon absorption process of a series of organic compounds via spectral phase modulation of the excitation pulse. We analyzed the effect of the pulse central wavelength on the control of the two-photon absorption process for each compound. Depending on the molecules` two-photon absorption position relative to the excitation pulse wavelength, different levels of coherent control were observed. By simulating the two-photon transition probability in molecular systems, taking into account the band structure and its positions, we could explain the experimental results trends. We observed that the intrapulse coherent interference plays an important role in the nonlinear process control besides just the pulse intensity modulation.
Resumo:
Langmuir-Blodgett (LB) and layer-by-layer films (LbL) of a PPV (p-phenylenevinylene) derivative, an azo compound and tetrasulfonated phthalocyanines were successfully employed as transducers in an ""electronic tongue"" system for detecting trace levels of phenolic compounds in water. The choice of the materials was based on their distinct electrical natures, which enabled the array to establish a fingerprint of very similar liquids. Impedance spectroscopy measurements were taken in the frequency range from 10 Hz to 1 MHz, with the data analysed with principal component analysis (PCA). The sensing units were obtained from five-layer LB films of (poly[(2-methoxy-5-n-hexyloxy)-p-phenylenevinylene]), OC(1)OC(18)-PPV (poly(2-methoxy,5-(n-octadecyl)-p-phenylenevinylene)), DR (HEMA-co-DR13MA (poly-(hydroxyethylmethacrylate-co-[4`-[[2-(methacryloyloxy)-ethyl]ethylamino]-2-chloro-4-nitroazobenzene]))) and five-bilayer LbL films of tetrasulfonated metallic phthalocyanines deposited onto gold interdigitated electrodes. The sensors were immersed into phenol, 2-chloro-4-methoxyphenol, 2-chlorophenol and 3-chlorophenol (isomers) solutions at 1 x 10(-9) mol L(-1), with control experiments carried out in ultra pure water. Samples could be distinguished if the principal component analysis (PCA) plots were made with capacitance values taken at 10(3) Hz, which is promising for detection of trace amounts of phenolic pollutants in natural water.
Resumo:
Perovskite-structured Ba(0.90)Ca(0.10)(Ti(1-x)Zr(x))O(3) ceramics were prepared in this work and subsequently studied in terms of composition-dependent dielectric and high-resolution long-range order structural properties from 30 to 450 K. The dielectric response of these materials was measured at several frequencies in the range from 1 kHz to 1 MHz. Combining both techniques, including Rietveld refinement of the X-ray diffraction data, allowed observing that, when increasing Zr(4+) content, the materials change from conventional to diffuse and relaxor ferroelectric compounds, the transition occurring spontaneously at the x = 0.18 composition. Interestingly, this spontaneous transition turned out to be prevented for a further increase of Zr(4+). On the basis of all the dielectric and structural results processed, a phase diagram of this system is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Two-photon absorption spectra of a triarylamine compounds dissolved in toluene were measured using the well-known Z-scan technique, employing 120-fs laser pulse-width. According to the results, an extra band located at around 900 nm was observed only for triarylamine with azoaromatic units. On the other hand, a shift in the two-photon absorption band for triarylamine, with and without azoaromatic units, is observed when different electron donor/acceptors groups are changed. The fitting of the spectra, using sum-over-states model, allowed us to obtain the spectroscopic parameters of each molecule, which appears to be in reasonable agreement with molecules presenting similar structural moieties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Films of amorphous aluminium nitride (AlN) were prepared by conventional radio frequency sputtering of an Al + Cr target in a plasma of pure nitrogen. The Cr-to-Al relative area determines the Cr content, which remained in the similar to 0-3.5 at% concentration range in this study. Film deposition was followed by thermal annealing of the samples up to 1050 degrees C in an atmosphere of oxygen and by spectroscopic characterization through energy dispersive x-ray spectrometry, photoluminescence and optical transmission measurements. According to the experimental results, the optical-electronic properties of the Cr-containing AlN films are highly influenced by both the Cr concentration and the temperature of the thermal treatments. In fact, thermal annealing at 1050 degrees C induces the development of structures that, because of their typical size and distinctive spectral characteristics, were designated by ruby microstructures (RbMSs). These RbMSs are surrounded by a N-rich environment in which Cr(3+) ions exhibit luminescent features not present in other Cr(3+)-containing systems such as ruby, emerald or alexandrite. The light emissions shown by the RbMSs and surroundings were investigated according to the Cr concentration and temperature of measurement, allowing the identification of several Cr(3+)-related luminescent lines. The main characteristics of these luminescent lines and corresponding excitation-recombination processes are presented and discussed in view of a detailed spectroscopic analysis.
Resumo:
A series of new ruthenium-iron based derivatives [Ru(eta(5)-Cp)(dppf)Cl] (1), [Ru(eta(5)-Cp)(dppf)Br] (2), [Ru(eta(5)-Cp)(dppf)I] (3) and [Ru(eta(5)-Cp)(dppf)N(3)] (4) were obtained by reactions of [Ru(eta(5)-Cp)(PPh(3))(2)Cl] with 1,1`-bis(diphenylphosphino) ferrocene (dppf) and characterized by IR, NMR ((1)H, (13)C and (31)P), (57)Fe Mossbauer spectroscopy and cyclic voltammetry. Additionally, the compound (3) was structurally characterized by X-ray crystallography, and the results were as follows: orthorhombic, Pbca, a = 18.2458(10), b = 20.9192(11), c = 34.4138(19) a""<<, alpha = beta = gamma = 90A degrees, V = 13135.3(12) a""<<(3) and Z = 16.
Resumo:
Complexes [Zn(2)(HL(1))(2)(CH(3)COO)(2)] (1) and [Zn(2)(L(2))(2)] (2) were synthesized with salicylaldehyde semicarbazone (H(2)L(1)) and salicylaldehyde-4-chlorobenzoyl hydrazone (H(2)LASSBio-1064, H(2)L(2)), respectively. The crystal structure of (1) was determined. Upon recrystallization of previously prepared [Zn(2)(HL(2))(2)(Cl)(2)] (3) in 1:9 DMSO:acetone crystals of [Zn(2)(L(2))(2)(H(2)O)(2)]center dot[Zn(2)(L(2))(2)(DMSO)(4)] (3a) were obtained. The crystal structure of 3a was also determined. All crystal structures revealed the presence of phenoxo-bridged binuclear zinc(II) complexes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The chemistry of Ru(III) complexes containing dmso as a ligand has become an interesting area in the cancer treatment field. Because of this, structural knowledge and chemistry of the moiety Ru(III)-dmso have become important to cancer research. The crystal structures of the compounds mer-[RuCl(3)(dms)(3)] (1) and mer-[RuCl(3)(dms)(2)(dmso)]:mer-[RuCl(3)(dms)(3)] (2) were determined by X-ray crystallography and a speciation of the presence of intramolecular hydrogen bond in these structures has been studied. Compound (1) crystallizes in the orthorhombic space group, Pna2(1); a = 16.591(8) angstrom, b = 8.724(2) angstrom. c = 10.547(3) angstrom; Z = 12 and (2) crystallizes in the space group, P2(1)/C: a = 11.9930(2) angstrom, b = 7.9390(2) angstrom, c = 15.8700(3) angstrom, beta = 93.266(1)degrees, Z = 2. From the X-ray structures solved in this work, were possible to suggest an interpretation for the broad lines observed in the EPR spectra of the Ru(III) compounds explored here. Also, the exchange interactions detected by EPR spectroscopy in solid state and in solution, confirm the presence of van der Waals interactions such as C-H center dot center dot center dot Cl in the compounds (1), (2) and (3). The use of techniques such as IR, UV-vis, (1)H NMR and EPR Spectroscopy and Cyclic Voltammetry were applied in this work to analyze the behavior of these metallocompounds. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical oxidation of anodic metal (cobalt, nickel, copper, zinc and cadmium) in an acetonitrile solution of the Schiff-base ligand 2-(tosylamino)-N-[2-(tosylamino)-benzylidene] aniline (H(2)L) afforded the homoleptic compounds [ML]. The addition of 1,1-diphenylphosphanylmethane (dppm), 2,2`-bipyridine (bipy) or 1,10-phenanthroline (phen) to the electrolytic phase gave the heteroleptic complexes [NiL(dppm)], [ML(bipy)] and [ML(phen)]. The crystal structures of H(2)L (1), [NiL] (2), [CuL] (3), [NiL(dppm)] (4), [CoL(phen)] (5), [CuL(bipy)] (6) and [Zn(Lphen)] (7) were determined by X-ray diffraction. The homoleptic compounds [NiL] and [CuL] are mononuclear with a distorted square planar [MN(3)O] geometry with the Schiff base acting as a dianionic (N(amide)N(amide)N(imine)O(tosyl)) tetradentate ligand. Both compounds exhibit an unusual pi-pi stacking interaction be-tween a six-membered chelate ring containing the metal and a phenylic ring of the ligand. In the heteroleptic complex [NiL(dppm)], the nickel atom is in a distorted tetrahedral [NiN(3)P] environment defined by the imine, two amide nitrogen atoms of the L(2-) dianionic tridentate ligand and one of the phosphorus atoms of the dppm molecule. In the other heteroleptic complexes, [CoL(phen)], [CuL(bipy)] and [ZnL(phen)], the metal atom is in a five-coordinate environment defined by the imine, two amide nitrogen atoms of the dianionic tridentate ligand and the two bipyridine or phenanthroline nitrogen atoms. The compounds were characterized by microanalysis, IR and UV/Vis (Co, Ni and Cu complexes) spectroscopy, FAB mass spectrometry and (1)H NMR ([NiL] and Zn and Cd complexes) and EPR spectroscopy (Cu complexes).
Resumo:
The reactions of PbPh2(OAC)(2) with alkylglyoxylate thiosemicarbazones (HRGTSC, R = Et, Bu) afforded complexes of the type [PbPh2(GTSC)] center dot H2O, [PbPh2(RGTSC)(2)] and [PbPh2Cl(BUGTSC)]. The structures of HRGTSC (R = Me, Et, Bu), [PbPh2(OAc)(RGTSC)](R = Me, Et, Bu), [PbPh2Cl(BuGTSC)] and [PbPh2(GTSC)] center dot H2O have been studied by X-ray diffraction. [PbPh2(OAc)(RGTSC)] and [PbPh2(GTSC)] center dot H2O have [PbC2NO3S] kernels and the coordination sphere of the metal is pentagonal bipyramidal. [PbPh2Cl(BuGTSC)] has a [PbC2NOSCI] kernel and the coordination geometry around lead is pentagonal bipyramidal with one vacant site. Analysis of the bond distances in [PbPh2(GTSC)] center dot H2O suggests a significant affinity between diphenyllead(IV) and carboxylate donor groups, supporting a borderline acidic character for this organometallic cation. H-1 and C-13 NMR spectra in DMSO-d(6) suggest the partial dissociation of the acetate in [PbPh2(OAc)(RGTSC)] solutions and indicate some differences in the coordination mode of the two RGTSC(-) ligands in [PbPh2(RGTSC)(2)] complexes. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The complex mer-[RuCl(3)(dppb)(H(2)O)] [dppb = 1,4-bis(diphenylphosphino)butane] was used as a precursor in the synthesis of the complexes tc-[RuCl(2)(CO)(2)(dppb)], ct-[RuCl(2)(CO)(2)(dppb)]. cis-[RuCl(2)(dppb)(Cl-bipy)], [RuCl(2Ac4mT)(dppb)] (2Ac4mT = N(4)-meta-tolyl-2-acetylpyridine thiosemicarbazone ion) and trans-[RuCl(2)(dppb)(mang)] (mang = mangiferin or 1,3,6,7-tetrahydroxyxanthone-C2-beta-D-glucoside) complexes. For the synthesis of Run complexes, the Ru(III) atom in mer-[RuCl(3)(dppb)(H(2)O)] may be reduced by H(2)(g), forming the intermediate [Ru(2)Cl(4)(dppb)(2)], or by a ligand (such as H2Ac4mT or mangiferin). The X-ray structures of the cis-[RuCl(2)(dppb)(Cl-bipy)], tc-[RuCl(2)(CO)(2)(dppb)] and [RuCl(2Ac4mT)(dPpb)] complexes were determined. (C) 2010 Elsevier Ltd. All rights reserved.