48 resultados para CHLORIDE SALINITY
Resumo:
Experimental results for the activity of water in aqueous solutions of 10 single, synthetic polyelectrolytes (polysodium acrylate, polysodium methacrylate, polyammonium acrylate, polysodium ethylene sulfonate, and polysodium styrene sulfonate) and sodium chloride at 298.2 K are presented. The experimental work was performed by applying the isopiestic method with sodium chloride as a reference substance. As expected, the activity of water decreases when the concentration of a polyelectrolyte and/or sodium chloride increases. At constant concentration of a polyelectrolyte and sodium chloride, the activity of water depends on the monomer unit and the molecular mass of the polyelectrolyte. The new data are to be used in future work to develop and test models for the Gibbs excess energy of aqueous solutions of polyelectrolytes.
Resumo:
Changes in soil sodicity-salinity parameters are one of the most characteristic alterations after treated sewage effluent (TSE) irrigation in agro-systems. Considering the importance of these parameters for agricultural management, as well as the economical value of sugarcane for Brazil, the present study aimed at evaluating effects on soil sodicity and salinity under tropical conditions over 16 months of TSE irrigation in a sugarcane plantation at Lins, Sao Paulo State, Brazil. Soil samplings were carried out in February 2005 (before planting), December 2005 (after 8 months of TSE irrigation) and September 2006 (after 16 months of TSE irrigation) following a complete block design with four treatments and four replicates. Treatments consisted of. (i) control, without TSE irrigation; (ii) T100, T150 and T200, with TSE irrigation supplying 100% (0% surplus, total of 2524 mm), 150% (50% surplus, total of 3832 mm) and 200% (100% surplus, total of 5092 mm) of crop water demand, respectively. Compared to initial soil conditions, at the end of the experiment increases of exchangeable sodium (from 2.4 to 5.9 mmol(c) kg(-1)), exchangeable sodium percentage (ESP) (from 8 to 18%), soluble Na (from 1.4 to 4.7 mmol L(-1)) and sodium adsorption ratio (SAR) of soil solution (from 3.6 to 12.6 (mmol were found in the soil profile (0-100 cm) as an average for the irrigated plots due to high SAR of TSE. Associated with the increments were mostly significant increases in clay dispersion rates at depths 0-10, 10-20 and 20-40 cm. Electrical conductivity (EC) of soil solution increased during the TSE irrigation period whereas at the end of the experiment, after short term discontinuation of irrigation and harvest, EC in the topsoil (0-10 and 10-20 cm) decreased compared to the previous samplings. Moreover, despite increasing sodicity over time mainly insignificant differences within the different irrigated treatments were found in December 2005 and September 2006. This suggests that independent of varying irrigation amounts the increasing soil sodicity over time were rather caused by the continuous use of TSE than by its quantity applied. Moreover, also plant productivity showed no significant differences within the TSE irrigated plots. The study indicates that monitoring as well as remediation of soil after TSE irrigation is required for a sustainable TSE use in order to maintain agricultural quality parameters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work is focused on the influence of dilution rate (0.08 <= D <= 0.32 d(1)) on the continuous cultivation and biomass composition of Arthrospira (Spirulina) platensis using three different concentrations of ammonium chloride (c(No) = 1.0, 5.0 and 10 mol m (3)) as nitrogen source. At c(No) = 1.0 and 5.0 mol m (3) the biomass protein content was an increasing function of D, whereas, when using c(No) = 10 mol m (3), the highest protein content (72.5%) was obtained at D = 0.12 d (1). An overall evaluation of the process showed that biomass protein content increased with the rate of nitrogen supply (D c(No)) up to 72.5% at D c(No) = 1.20 mol m (3) d (1). Biomass lipid content was an increasing function of D only when the nitrogen source was the limiting factor for the growth (D c(No) <= 0.32 mol m (-3) d (1)), which occurred solely with c(No), = 1.0 mol m (3). Under such conditions, A. platensis reduced its nitrogen reserve in the form of proteins, while maintaining almost unvaried its lipid content. The latter was affected only when the concentration of nitrogen was extremely low (c(No) = 1.0 mol m (3)). The most abundant fatty acids were the palmitic (45.8 +/- 5.20%) and the gamma-linolenic (20.1 +/- 2.00%) ones. No significant alteration in the profiles either of saturated or unsaturated fatty acids was observed with c(No) <= 5.0 mol m (3), prevailing those with 16 and 18 carbons. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Arthrospira platensis was cultivated in minitanks at 13 klux, using a mixture of KNO(3) and NH(4)Cl as nitrogen source. Fed-batch daily supply of NH(4)Cl at exponentially-increasing feeding rate allowed preventing ammonia toxicity and nitrogen deficiency, providing high maximum cell concentration (X(m)) and high-quality biomass (21.85 mg chlorophyll g cells(-1); 20.5% lipids; 49.8% proteins). A central composite design combined to response surface methodology was utilized to determine the relationships between responses (X(m), cell productivity and nitrogen-to-cell conversion factor) and independent variables (KNO(3) and NH(4)Cl concentrations). Under optimum conditions (15.5 mM KNO3; 14.1 mM NH(4)Cl), X(m) was 4327 mg L(-1), a value almost coincident with that obtained with only 25.4 mM KNO(3), but more than twice that obtained with 21.5 mM NH(4)Cl. A 30%-reduction of culture medium cost can be estimated when compared to KNO(3)-batch runs, thus behaving as a cheap alternative for the commercial production of this cyanobacterium. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study dealt with the influence of both the feeding time and light intensity on the fed-batch culture of the cyanobacterium Spirulina (Arthrospira) platensis using ammonium chloride as a nitrogen source. For this purpose, a 2 2 plus star central composite experimental design combined with response surface methodology was employed, and the maximum cell concentration (X-m), the cell productivity (P-X), and the yield of biomass on nitrogen (Y-X/N) were selected as the response variables. The optimum values of X-m (1,833 mgL(-1)) and Y-X/N (5.9 gg(-1)) estimated by the model at light intensity of 13 klux and feeding time of 17.2 days were very close to those obtained experimentally under these conditions (X-m = 1,771 +/- 41 mg L-1; Y-X/N = 5.7 +/- 0.17 gg(-1)). The cell productivity was a decreasing function of the ammonium chloride feeding time and a quadratic function of the light intensity. The protein and lipid contents of dry biomass collected at the end of cultivations were shown to decrease with increasing light intensity.
Resumo:
We investigated the effect of sodium reduction by partial substitution of sodium chloride (NaCl) with potassium chloride (KCl) on the manufacture of Minas fresh cheese during 21 d of refrigerated storage. Four treatments of low-sodium Minas fresh cheese were manufactured, with partial replacement of NaCl by KCl at 0, 25, 50, and 75% (wt/wt), respectively. The cheeses showed differences in the content of moisture, ash, protein, salt, and lipid contents, as well as on the extent of proteolysis and hardness throughout the storage period. However, no difference was observed among treatments within each storage day tested. The partial substitution of NaCl by KCl decreased up to 51.8% the sodium concentration of the cheeses produced. The consumer test indicated that it is possible to manufacture a low-sodium Minas fresh cheese that is acceptable to consumers by partial substitution of NaCl by KCl at 25% (wt/wt) in the salting step.
Resumo:
The aim of present study was to verify the in vitro antitumor activity of a ruthenium complex, cis-(dichloro)tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) toward different tumor cell lines. The antitumor studies showed that ruthenium(III) complex presents a relevant cytotoxic activity against murine B cell lymphoma (A-20), murine ascitic sarcoma 180 (S-180), human breast adenocarcinoma (SK-BR-3), and human T cell leukemia (Jurkat) cell lines and a very low cytotoxicity toward human peripheral blood mononuclear cells. The ruthenium(III) complex decreased the fraction of tumor cells in G0/G1 and/or G2-M phases, indicating that this compound may act on resting/early entering G0/G1 cells and/or precycling G2-M cells. The cytotoxic activity of a high concentration (2 mg mL(-1)) of cis-[RuCl(2)(NH(3))(4)]Cl toward Jurkat cells correlated with an increased number of annexin V-positive cells and also the presence of DNA fragmentation, suggesting that this compound induces apoptosis in tumor cells. The development of new antineoplastic medications demands adequate knowledge in order to avoid inefficient or toxic treatments. Thus, a mechanistic understanding of how metal complexes achieve their activities is crucial to their clinical success and to the rational design of new compounds with improved potency.
Resumo:
Ruthenium compounds in general are well suited for medicinal applications. They have been investigated as immunosuppressants, nitric oxide scavengers, antimicrobial agents, and antimalarials. The aim of this study is to evaluate the immunomodulatory activity of cis-(dichloro) tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) on human peripheral blood mononuclear cells (PBMC). The cytotoxic studies performed here revealed that the ruthenium( III) complex presents a cytotoxic activity towards normal human PBMC, only at very high concentration. Results also showed that cis-[ RuCl(2)(NH(3))(4)] Cl presents a dual role on PBMC stimulating proliferation and interleukin-2 (IL-2) production at low concentration and inducing cytotoxicity, inability to proliferate, and inhibiting IL-2 production at high concentration. The noncytotoxic activity of cis-[RuCl(2)(NH(3))(4)] Cl at low concentration towards PBMC, which correlates with the small number of annexin V positive cells and also the absence of DNA fragmentation, suggest that this compound does not induce apoptosis on PBMC. For the first time, we show that, at low concentration (10-100 mu g L(-1)), the cis-[ RuCl(2)(NH(3))(4)] Cl compound induces peripheral blood lymphocytes proliferation and also stimulates them to IL-2 production. These results open a new potential applicability of ruthenium(III) complexes as a possible immune regulatory compound acting as immune suppressor at high concentration and as immune stimulator at low concentration.
Resumo:
To better understand the biochemical mechanisms underlying anisosmotic extracellular regulation in the freshwater Brachyura, we kinetically characterized the V-ATPase from the posterior gills of Dilocarcinus pagei, acclimated for 10 days to salinities up to 21%.. Specific activity was highest in fresh water (26.5 +/- 2.1 U mg(-1)), decreasing in 5 parts per thousand to 21 parts per thousand, attaining 3-fold less at 15 parts per thousand. Apparent affinities for ATP and Mg(2+) respectively increased 3.2- and 2-fold at 10 parts per thousand, suggesting expression of different isoenzymes. In a 240-h time-course study of exposure to 21%., maximum specific activity decreased 2.5- to 4-fold within 1 to 24 h while apparent affinities for ATP and Mg(2+) respectively increased by 12-fold within 24 h and 2.4-fold after 1 h, unchanged thereafter. K(I) for bafilomycin A(1) decreased 150-fold after 1 h, remaining constant up to 120 h. This is the first kinetic analysis of V-ATPase specific activity in crustacean gills during salinity acclimation. Our findings indicate active gill Cl(-) uptake by D. pagei in fresh water, and short- and long-term down-regulation of V-ATPase-driven ion uptake processes during salinity exposure, aiding in comprehension of the biochemical adaptations underpinning the establishment of the Brachyura in fresh water. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Soil salinity is a major abiotic stress influencing plant productivity worldwide. Schinopsis quebracho colorado is one of the most important woody species in the Gran Chaco, an and and salt-prone subtropical biome of South America. To gain a better understanding of the physiological mechanisms that allow plant establishment under salt conditions, germination and seedling growth of S. quebracho colorado were examined under treatment with a range of NaCl solutions (germination: 0-300 mmol l(-1) NaCl; seedling growth: 0-200 mmol l(-1) NaCl). The aim was to test the hypothesis that S. quebracho colorado is a glycophite that shows different salt tolerance responses with development stage. Proline content, total soluble carbohydrates and Na+, K+ and Cl- concentrations in leaves and roots of seedlings, and the chlorophyll concentration and relative water content of leaves were measured. Germination was not affected by 100 mmol l(-1) NaCl, but decreased at a concentration of 200 mmol l(-1). At 300 mmol l(-1) NaCl, germination did not occur. Seedling growth decreased drastically with increasing salinity. An increase in NaCl from 0 to 100 mmol l(-1) also significantly reduced the leaf relative water content by 22% and increased the proline concentration by 60% in roots. In contrast, total soluble carbohydrates were not significantly affected by salinity. Seedlings showed a sodium exclusion capacity, and there was an inverse correlation between Cl- concentration and the total chlorophyll concentration. S. quebracho colorado was more tolerant to salinity during germination than in the seedling phase. The results suggest that this increased tolerance during germination might, in part, be the result of lower sensitivity to high tissue Na+ concentrations. The significant increment of proline in the roots suggests the positive role of this amino acid as a compatible solute in balancing the accumulation of Na+ and Cl- as a result of salinity. These results help clarify the physiological mechanisms that allow establishment of S. quebracho colorado on salt-affected soils in arid and semi-arid Gran Chaco. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical treatment of a synthetic tannery wastewater prepared with 30 compounds used in animal skin processing was studied. Electrolyses were performed in a one-compartment flow cell at a current density of 20 mA cm(-2), using a dimensionally stable anode (DSA (R)) of composition Ti/Ir(0.10)Sn(0.90)O(2) as the working electrode. Effects of chloride concentration and presence of sulfate were evaluated. Variation in the concentration of phenolic compounds as a function of electrolysis time revealed a first-order exponential decay; faster phenol removals were obtained with increasing chloride concentration in the wastewater. Lower phenol removals were obtained in the presence of sulfate. Higher chloride concentrations led to a faster decrease in total organic carbon (TOC), chemical oxygen demand (COD), and absorbance values at 228 nm. Faster wastewater color removal, higher current efficiency and lower energy consumption were also obtained. This electrochemical treatment was also able to reduce the wastewater toxicity for Daphnia similis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A highly efficient two-step method for the synthesis of pyranoquinoline derivatives from imino-Diels-Alder reactions between aldimines and 3,4-dihydro-2H-pyran using niobium(V) chloride as catalyst under mild conditions is described.
Resumo:
We evaluate osmotic and chloride (Cl(-)) regulatory capability in the diadromous shrimp Macrobrachium amazonicum, and the accompanying alterations in hemolymph osmolality and [Cl(-)], gill Na(+)/K(+)-ATPase activity, and expression of gill Na(+)/K(+)-ATPase alpha-subunit and V-ATPase B subunit mRNA during salinity (S) acclimation. We also characterize V-ATPase kinetics and the organization of transport-related membrane systems in the gill epithelium. Macrobrachium amazonicum strongly hyper-regulates hemolymph osmolality and [Cl(-)] in freshwater and in salinities up to 25 parts per thousand S. During a 10-day acclimation period to 25 parts per thousand S, hemolymph became isosmotic and hypo-chloremic after 5 days, [Cl(-)] alone remaining hyporegulated thereafter. Gill Na(+)/K(+)-ATPase alpha-subunit mRNA expression increased 6.5 times initial values after 1 h, then decreased to 3 to 4 times initial values by 24 h and to 1.5 times initial values after 10 days at 25 parts per thousand S. This increased expression was accompanied by a sharp decrease at 5 h then recovery of initial Na(+)/K(+)-ATPase activity within 24 h, declining again after 5 days, which suggests transient Cl(-) secretion. V-ATPase B-subunit mRNA expression increased 1.5-fold within 1 h, then reduced sharply to 0.3 times initial values by 5 h, and remained unchanged for the remainder of the 10-day period. V-ATPase activity dropped sharply and was negligible after a 10-day acclimation period to 21 parts per thousand S, revealing a marked downregulation of ion uptake mechanisms. The gill epithelium consists of thick, apical pillar cell flanges, the perikarya of which are coupled to an intralamellar septum. These two cell types respectively exhibit extensive apical evaginations and deep membrane invaginations, both of which are associated with numerous mitochondria, characterizing an ion transporting epithelium. These changes in Na(+)/K(+)- and V-ATPase activities and in mRNA expression during salinity acclimation appear to underpin ion uptake and Cl(-) secretion by the palaemonid shrimp gill.
Resumo:
The electrochemical treatment of a synthetic tannery wastewater, prepared with several compounds used by finishing tanneries, was studied in chloride-free media. Boron-doped diamond (Si/BDD), antimony-doped tin dioxide (Ti/SnO(2)-Sb), and iridium-antimony-doped tin dioxide (Ti/SnO(2)-Sb-Ir)were evaluated as anode. The influence of pH and current density on the treatment was assessed by means of the parameters used to measure the level of organic contaminants in the wastewater; i.e., total phenols, chemical oxygen demand (COD), total organic carbon (TOC), and absorbance. Results showed that faster decrease in these parameters occurred when the Si/BDD anode was used. Good results were obtained with the Ti/SnO(2)-Sb anode, but its complete deactivation was reached after 4h of electrolysis at 25 mA cm(-2), indicating that the service life of this electrode is short. The Ti/SnO(2)-Sb-Ir anode is chemically and electrochemically more stable than the Ti/SnO(2)-Sb anode, but it is not suitable for the electrochemical treatment under the studied conditions. No significant changes were observed for electrolyses performed at different pH conditions with Si/BDD, and this electrode led to almost complete mineralization after 4 h of electrolysis at 100mAcm(-2). The increase in current density resulted in faster wastewater oxidation, with lower current efficiency and higher energy consumption. Si/BBD proved to be the best electrodic material for the direct electrooxidation of tannery wastewaters. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In situ and ex situ studies concerning the new hybrid material vanadium pentoxide xerogel in the presence of the cationic surfactant cetyl pyridinium chloride (V(2)O(5)/CPC) are presented. The in situ characterization studies revealed the presence of a lamellar structure for the V(2)O(5)/CPC hybrid material. The intercalation reaction was evidenced on the basis of the increase in the d-spacing as well as the displacement of the infrared bands toward lower energy levels. Electrochemical studies comprising the cyclic voltammetry and the electrochemical impedance spectroscopy techniques showed that the behavior of the hybrid material is considerably influenced by the electrolyte composition. The ion insertion/de-insertion into the V(2)O(5) xerogel structure accompanying the charge transfer process is influenced by the solid-state diffusion process modeled by using the finite-space Warburg element.