276 resultados para CHAIN-REACTION IDENTIFICATION
Resumo:
Genital mycoplasmas are natural inhabitants of the male urethra and are potentially pathogenic species playing an aetiological role in both genital infections and male infertility. This study aims to determine the presence of Mycoplasma genitalium DNA in urine samples of HIV-1-infected men in Sao Paulo city. Realtime polymerase chain reaction (PCR) was performed using the primers My-ins and Mgso-2 and the Taqman probe Mgen-P1 as described previously. A total of 223 HIV-1-infected men were tested with a mean age of 44 years. Thirteen (5.8%) presented M. genitalium in urine and the co-infection was more common among homosexual men (76.9% versus 51.9%, P < 0.26). In conclusion, realtime PCR was a useful and rapid method for detecting M. genitalium DNA in urine samples. Further studies should be conducted to assess the clinical significance of these results on HIV transmission and its impact on HIV viral load.
Resumo:
Background: Cryptic species complexes are common among anophelines. Previous phylogenetic analysis based on the complete mtDNA COI gene sequences detected paraphyly in the Neotropical malaria vector Anopheles marajoara. The ""Folmer region"" detects a single taxon using a 3% divergence threshold. Methods: To test the paraphyletic hypothesis and examine the utility of the Folmer region, genealogical trees based on a concatenated (white + 3' COI sequences) dataset and pairwise differentiation of COI fragments were examined. The population structure and demographic history were based on partial COI sequences for 294 individuals from 14 localities in Amazonian Brazil. 109 individuals from 12 localities were sequenced for the nDNA white gene, and 57 individuals from 11 localities were sequenced for the ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2). Results: Distinct A. marajoara lineages were detected by combined genealogical analysis and were also supported among COI haplotypes using a median joining network and AMOVA, with time since divergence during the Pleistocene (< 100,000 ya). COI sequences at the 3' end were more variable, demonstrating significant pairwise differentiation (3.82%) compared to the more moderate 2.92% detected by the Folmer region. Lineage 1 was present in all localities, whereas lineage 2 was restricted mainly to the west. Mismatch distributions for both lineages were bimodal, likely due to multiple colonization events and spatial expansion (similar to 798 - 81,045 ya). There appears to be gene flow within, not between lineages, and a partial barrier was detected near Rio Jari in Amapa state, separating western and eastern populations. In contrast, both nDNA data sets (white gene sequences with or without the retention of the 4th intron, and ITS2 sequences and length) detected a single A. marajoara lineage. Conclusions: Strong support for combined data with significant differentiation detected in the COI and absent in the nDNA suggest that the divergence is recent, and detectable only by the faster evolving mtDNA. A within subgenus threshold of >2% may be more appropriate among sister taxa in cryptic anopheline complexes than the standard 3%. Differences in demographic history and climatic changes may have contributed to mtDNA lineage divergence in A. marajoara.
Resumo:
In this study, 222 genome survey sequences were generated for Trypanosoma rangeli strain P07 isolated from an opossum (Didelphis albiventris) in Minas Gerais State, Brazil. T. rangeli sequences were compared by BLASTX (Basic Local Alignment Search Tool X) analysis with the assembled contigs of Leishmania braziliensis, Leishmania infantum, Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. Results revealed that 82% (182/222) of the sequences were associated with predicted proteins described, whereas 18% (40/222) of the sequences did not show significant identity with sequences deposited in databases, suggesting that they may represent T. rangeli-specific sequences. Among the 182 predicted sequences, 179 (80.6%) had the highest similarity with T. cruzi, 2 (0.9%) with T. brucei, and 1 (0.5%) with L. braziliensis. Computer analysis permitted the identification of members of various gene families described for trypanosomatids in the genome of T. rangeli, such as trans-sialidases, mucin-associated surface proteins, and major surface proteases (MSP or gp63). This is the first report identifying sequences of the MSP family in T. rangeli. Multiple sequence alignments showed that the predicted MSP of T. rangeli presented the typical characteristics of metalloproteases, such as the presence of the HEXXH motif, which corresponds to a region previously associated with the catalytic site of the enzyme, and various cysteine and proline residues, which are conserved among MSPs of different trypanosomatid species. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of MSP transcripts in epimastigote forms of T. rangeli.
Resumo:
Duchenne muscular dystrophy (DMD) is a human disease characterized by progressive and irreversible skeletal muscle degeneration caused by mutations in genes coding for important muscle proteins. Unfortunately, there is no efficient treatment for this disease; it causes progressive loss of motor and muscular ability until death. The canine model (golden retriever muscular dystrophy) is similar to DMD, showing similar clinical signs. Fifteen dogs were followed from birth and closely observed for clinical signs. Dogs had their disease status confirmed by polymerase chain reaction analysis and genotyping. Clinical observations of musculoskeletal, morphological, gastrointestinal, respiratory, cardiovascular, and renal features allowed us to identify three distinguishable phenotypes in dystrophic dogs: mild (grade I), moderate (grade II) and severe (grade III). These three groups showed no difference in dystrophic alterations of muscle morphology and creatine kinase levels. This information will be useful for therapeutic trials, because DMD also shows significant, inter- and intra-familiar clinical variability. Additionally, being aware of phenotypic differences in this animal model is essential for correct interpretation and understanding of results obtained in pre-clinical trials.
Resumo:
Diffuse infiltrating gliomas are the most common tumors of the central nervous system. Gliomas are classified by the WHO according to their histopathological and clinical characteristics into four classes: grade I (pilocytic astrocytoma), grade II (diffuse astrocytoma), grade III (anaplastic astrocytoma), and grade IV (glioblastoma multiforme). Several genes have already been correlated with astrocytomas, but many others are yet to be uncovered. By analyzing the public SAGE data from 21 patients, comprising low malignant grade astrocytomas and glioblastomas, we found COL6A1 to be differentially expressed, confirming this finding by real time RT-PCR in 66 surgical samples. To the best of our knowledge, COL6A1 has never been described in gliomas. The expression of this gene has significantly different means when normal glia is compared with low-grade astrocytomas (grades I and II) and high-grade astrocytomas (grades III and IV), with a tendency to be greater in higher grade samples, thus rendering it a powerful tumor marker.
Resumo:
Since Staphylococcus aureus can cause several types of diseases, the development of antibiotic resistance poses an even greater threat to public health. S. aureus is known to possess the adaptive capability to promptly respond to antibiotics, making it resistant and increasingly difficult to treat; methicillin-resistant strains of S. aureus are a major concern with regard to this species. Previous studies reported the identification of methicillin-resistant S. aureus in food, demonstrating that this can represent a source of S. aureus which may carry the mecA gene. Fifty-seven S. aureus isolates, previously obtained from different types of food, were screened by polymerase chain reaction with specific primers for the mecA gene, which mediates methicillin resistance. Five (9%) isolates showed the presence of mecA gene, demonstrating that food may contain microorganisms possessing resistance genes. This study emphasizes the need to include food as a possible source of S. aureus carrying mecA gene and the need to monitor these products. Moreover, this is the first report of the presence of mecA genes in S. aureus isolated from ready-to-eat food in Brazil and Latin America.
Resumo:
Lactic acid bacteria ( LAB) are currently used by food industries because of their ability to produce metabolites with antimicrobial activity against gram-positive pathogens and spoilage microorganisms. The objectives of this study were to identify naturally occurring bacteriocinogenic or bacteriocinogenic-like LAB in raw milk and soft cheese and to detect the presence of nisin-coding genes in cultures identified as Lactococcus lactis. Lactic acid bacteria cultures were isolated from 389 raw milk and soft cheese samples and were later characterized for the production of antimicrobial substances against Listeria monocytogenes. Of these, 58 (14.9%) LAB cultures were identified as antagonistic; the nature of this antagonistic activity was then characterized via enzymatic tests to confirm the proteinaceous nature of the antimicrobial substances. In addition, 20 of these antagonistic cultures were selected and submitted to genetic sequencing; they were identified as Lactobacillus plantarum (n = 2) and Lactococcus lactis ssp. lactis (n = 18). Nisin genes were identified by polymerase chain reaction in 7 of these cultures. The identified bacteriocinogenic and bacteriocinogenic-like cultures were highly variable concerning the production and activity of antimicrobial substances, even when they were genetically similar. The obtained results indicated the need for molecular and phenotypic methodologies to properly characterize bacteriocinogenic LAB, as well as the potential use of these cultures as tools to provide food safety.
Resumo:
The incidence of cutaneous leishmaniasis (CL) is increasing and there is limited surveillance of Leishmania species throughout the world. We identified the species associated with CL in a region of Amazonia, an area recognized for its Leishmania species variability. Clinical findings were analyzed and correlated with the species identified in 93 patients. PCR assays were based on small subunit ribosomal DNA (SSU-rDNA) and G6PD, and were performed in a laboratory located 3,500 km away. Leishmania (V.) braziliensis was identified in 53 patients (57%). The other 40 patients (43%) carried a different species (including six cases of L (L) amazonensis). Molecular methods can be employed, using special media, to allow transport to distant laboratories. L (V.) braziliensis is the most common species in the area of Para. The location of ulcers can suggest CL species (C) 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
Paraffin-embedded samples commonly stored at educational and research institutions constitute tissues banks for follow-up or epidemiological studies; however, the paraffin inclusion process involves the use of substances that can cause DNA degradation. In this study, a PCR protocol was applied to identify Leishmania strains in 33 paraffin-embedded skin samples of patients with American cutaneous leishmaniasis. DNA was obtained by the phenol-chloroform protocol following paraffin removal and then used in PCR or nested PCR based on the nucleotide sequence of the small subunit ribosomal RNA (SSU rDNA). The amplicons obtained were cloned and sequenced to determine the single nucleotide polymorphism that distinguishes between different Leishmania species or groups. This assay allowed to distinguish organisms belonging to the subgenus Viannia and identify L. (Leishmania) amazonensis and L. (L.) chagasi of the Leishmania subgenus. Of the 33 samples, PCR and nested PCR identified 91% of samples. After sequencing the PCR product of 26 samples, 16 were identified as L. (L.) amazonensis, the other 10 contain organisms belonging to the L. (Viannia) sub-genus. These results open a huge opportunity to study stored samples and promote relevant contributions to epidemiological studies.
Resumo:
Toxoplasma gondii, Hammondia hammondi, Neospora caninum, Neospora hughesi and Hammondia heydorni are members of the Toxoplasmatinae sub-family. They are closely related coccidians with similarly sized oocysts. Molecular diagnostic techniques, especially those based on polymerase chain reaction (PCR), can be successfully applied for the differentiation of Hammondia-like oocysts. In this paper, we describe a rapid and simple method for the identification of H. heydorni oocysts among other members of the Toxoplasmatinae sub-family, using a heminested-PCR (hnPCR-AP10) based on a H. heydorni RAPD fragment available in molecular database. DNA of oocysts of H. heydorni yielded a specific fragment of 289-290 bp in the heminested-PCR assay. No product was yielded when the primers were used for the amplification of DNA extracted from T. gondii, N. caninum, N. hughesi and H. hammondi, thus allowing the differentiation of H. heydorni among other members of the Toxoplasmatinae sub-family. The hnPCR-AP10 was capable of detecting H. heydorni genetic sequences from suspensions with at least 10 oocysts. In conclusion, the hnPCR-AP10 proved to be a reliable method to be used in the identification of H. heydorni oocysts from feces of dogs. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Aims: To evaluate the sensitivity and specificity of polyclonal and monoclonal antibodies (Mabs) against intimin in the detection of enteropathogenic and enterohaemorrhagic Escherichia coli isolates using immunoblotting. Methods and Results: Polyclonal and Mabs against the intimin-conserved region were raised, and their reactivities were compared in enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC) isolates using immunoblotting analysis. In comparison with rat antiserum, rabbit anti-intimin IgG-enriched fraction had a stronger recognition pattern to a wide spectrum of intimin types in different EPEC and EHEC serotypes. On the other hand, murine monoclonal IgG2b specific to intimin, with dissociation constant of 1 center dot 3 x 10-8 mol l-1, failed in the detection of some of these isolates. Conclusion: All employed antibodies showed 100% specificity, not reacting with any of the eae-negative isolates. The sensitivity range was according to the employed antisera, and 97% for rabbit anti-intimin IgG-enriched fraction, followed by 92% and 78% sensitivity with rat antisera and Mab. Significance and Impact of the Study: The rabbit anti-intimin IgG-enriched fraction in immunoblotting analysis is a useful tool for EPEC and EHEC diagnoses.
Resumo:
Trypanosoma cruzi and Trypanosoma rangeli are human-infective blood parasites, largely restricted to Central and South America. They also infect a wide range of wild and domestic mammals and are transmitted by a numerous species of triatomine bugs. There are significant overlaps in the host and geographical ranges of both species. The two species consist of a number of distinct phylogenetic lineages. A range of PCR-based techniques have been developed to differentiate between these species and to assign their isolates into lineages. However, the existence of at least six and five lineages within T. cruzi and T. rangeli, respectively, makes identification of the full range of isolates difficult and time consuming. Here we have applied fluorescent fragment length barcoding (FFLB) to the problem of identifying and genotyping T. cruzi, T. rangeli and other South American trypanosomes. This technique discriminates species on the basis of length polymorphism of regions of the rDNA locus. FFLB was able to differentiate many trypanosome species known from South American mammals: T. cruzi cruzi. T. cruzi marinkellei, T. dionisii-like, T. evansi, T. lewisi, T. rangeli, T. theileri and T. vivax. Furthermore, all five T. rangeli lineages and many T. cruzi lineages could be identified, except the hybrid lineages TcV and TcVI that could not be distinguished from lineages III and II respectively. This method also allowed identification of mixed infections of T. cruzi and T. rangeli lineages in naturally infected triatomine bugs. The ability of FFLB to genotype multiple lineages of T. cruzi and T. rangeli together with other trypanosome species, using the same primer sets is an advantage over other currently available techniques. Overall, these results demonstrate that FFLB is a useful method for species diagnosis, genotyping and understanding the epidemiology of American trypanosomes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Anticarsia gemmatalis) were the objectives of this study. Twelve aerobic and anaerobic isolates of proteolytic bacteria were obtained from the caterpillar gut in calcium caseinate agar. The number of colony forming units (CFUs) of proteolytic bacteria was higher when the bacteria were extracted from caterpillars reared on artificial diet rather than on soybean leaves (1.73 +/- 0.35 X 10(3) and 0.55 +/- 0.22 X 10(3) CFU/mg gut, respectively). The isolated bacteria were divided into five distinct groups, according to their polymerase chain reaction restriction fragment-length polymorphism profiles. After molecular analysis, biochemical tests and fatty acid profile determination, the bacteria were identified as Bacillus subtilis, Bacillus cereus, Enterococcus gallinarum, Enterococcus mundtii, and Staphylococcus xylosus. Bacterial proteolytic activity was assessed through in vitro colorimetric assays for (general) proteases, serine proteases, and cysteine proteases. The isolated bacteria were able of hydrolyzing all tested substrates, except Staphylococcus xylosus, which did not exhibit serine protease activity. This study provides support for the hypothesis that gut proteases from velvetbean caterpillar are not exclusively secreted by the insect cells but also by their symbiotic gut bacteria. The proteolytic activity from gut symbionts of the velvetbean caterpillar is suggestive of their potential role minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean, with implications for the management of this insect pest species.
Resumo:
Variation among natural populations of Culex (Culex) quinquefasciatus Say is associated with different vectorial capacities. The species Cx. quinquefasciatus is present in the equatorial, tropical and subtropical zones in the Brazilian territory, with intermediate forms between Cx. quinquefasciatus and Culex pipiens occurring in regions of latitudes around 33°-35°S. Herein, we studied geographically distinct populations of Cx. quinquefasciatus by genetic characterization and analysis of intra-specific wing morphometrics. After morphological analysis, molecular characterization of Cx. quinquefasciatus and intermediate forms was performed by polymerase chain reaction of the polymorphic nuclear region of the second intron of the acetylcholinesterase locus. Additionally, the morphology of adult female wings collected from six locations was analyzed. Wing centroid sizes were significantly different between some geographical pairs. Mean values of R2/R2+3 differed significantly after pairwise comparisons. The overall wing shape represented by morphometric characters could be divided into two main groupings. Our data suggest that Brazilian samples are morphologically and genetically distinct from the Argentinean samples and also indicated a morphological distinction between northern and southern populations of Brazilian Cx. quinquefasciatus. We suggest that wing morphology may be used for preliminary assessment of population structure of Cx. quinquefasciatusin Brazil
Resumo:
Background: Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in humans. The average 5-year survival rate is one of the lowest among aggressive cancers, showing no significant improvement in recent years. When detected early, HNSCC has a good prognosis, but most patients present metastatic disease at the time of diagnosis, which significantly reduces survival rate. Despite extensive research, no molecular markers are currently available for diagnostic or prognostic purposes. Methods: Aiming to identify differentially-expressed genes involved in laryngeal squamous cell carcinoma (LSCC) development and progression, we generated individual Serial Analysis of Gene Expression (SAGE) libraries from a metastatic and non-metastatic larynx carcinoma, as well as from a normal larynx mucosa sample. Approximately 54,000 unique tags were sequenced in three libraries. Results: Statistical data analysis identified a subset of 1,216 differentially expressed tags between tumor and normal libraries, and 894 differentially expressed tags between metastatic and non-metastatic carcinomas. Three genes displaying differential regulation, one down-regulated (KRT31) and two up-regulated (BST2, MFAP2), as well as one with a non-significant differential expression pattern (GNA15) in our SAGE data were selected for real-time polymerase chain reaction (PCR) in a set of HNSCC samples. Consistent with our statistical analysis, quantitative PCR confirmed the upregulation of BST2 and MFAP2 and the downregulation of KRT31 when samples of HNSCC were compared to tumor-free surgical margins. As expected, GNA15 presented a non-significant differential expression pattern when tumor samples were compared to normal tissues. Conclusion: To the best of our knowledge, this is the first study reporting SAGE data in head and neck squamous cell tumors. Statistical analysis was effective in identifying differentially expressed genes reportedly involved in cancer development. The differential expression of a subset of genes was confirmed in additional larynx carcinoma samples and in carcinomas from a distinct head and neck subsite. This result suggests the existence of potential common biomarkers for prognosis and targeted-therapy development in this heterogeneous type of tumor.