26 resultados para Best Approximation
Resumo:
Purpose: To correlate ovarian reserve (OR) markers with response in assisted reproduction techniques (ART) and determine their ability to predict poor response among patients with endometriosis (EDT). Methods: We evaluated ART cycles of 27 women with EDT and 50 with exclusive male factor. Basal follicle stimulating hormone (FSH) and anti-mullerian hormone (AMH) levels were determined. Ovarian response to gonadotropin stimulation was assessed and correlation coefficients calculated between the variables and reserve markers. Areas under the curve (AUC) determined ability of tests to predict poor response. Results: AMH was significantly correlated with response in both groups and it was the only marker with significant discriminative capacity to predict poor response among EDT (AUC = 0.842; 95% CI: 0.651-0.952) and control group (AUC = 0.869; 95% CI: 0.743-0.947). Conclusion: Infertile patients with endometriosis can benefit from the pre-therapeutic assessment of OR markers. However, regardless of disease presence, only AMH predicts poor response to stimulus.
Resumo:
Objectives The methods currently available for the measurement of energy expenditure in patients, such as indirect calorimetry and double-labelled water, are expensive and are limited in Brazil to research projects. Thus, equations for the prediction of resting metabolic rate appear to be a viable alternative for clinical practice. However, there are no specific equations for the Brazilian population and few studies have been conducted on Brazilian women in the climacteric period using existing and commonly applied equations. On this basis, the objective of the present study was to investigate the concordance between the predictive equations most frequently used and indirect calorimetry for the measurement of resting metabolic rate. Methods We calculated the St. Laurent concordance correlation coefficient between the equations and resting metabolic rate calculated by indirect calorimetry in 46 climacteric women. Results The equation showing the best concordance was that of the FAO/WHO/UNU formula (0.63), which proved to be better than the Harris & Benedict equation (0.55) for the sample studied. Conclusions On the basis of the results of the present study, we conclude that the FAO/WHO/UNU formula can be used to predict better the resting metabolic rate of climacteric women. Further studies using more homogeneous and larger samples are needed to permit the use of the FAO/WHO/UNU formula for this population group with greater accuracy.
Resumo:
A technique to calculate the current waveform for both close-up and remote short-circuit faults on DC supplied railways and subways is presented. Exact DC short-circuit current calculation is best performed by sophisticated computer transient simulations. However, an accurate simplified calculation method based on second-order approximation which can be easily executed with the help of a calculator or a spreadsheet program is proposed.
Resumo:
We study the validity of the Born-Oppenheimer approximation in chaotic dynamics. Using numerical solutions of autonomous Fermi accelerators. we show that the general adiabatic conditions can be interpreted as the narrowness of the chaotic region in phase space. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We apply a self-energy-corrected local density approximation (LDA) to obtain corrected bulk band gaps and to study the band offsets of AlAs grown on GaAs (AlAs/GaAs). We also investigate the Al(x)Ga(1-x)As/GaAs alloy interface, commonly employed in band gap engineering. The calculations are fully ab initio, with no adjustable parameters or experimental input, and at a computational cost comparable to traditional LDA. Our results are in good agreement with experimental values and other theoretical studies. Copyright (C) EPLA, 2011
Resumo:
We observe experimentally a deviation of the radius of a Bose-Einstein condensate from the standard Thomas-Fermi prediction, after free expansion, as a function of temperature. A modified Hartree-Fock model is used to explain the observations, mainly based on the influence of the thermal cloud on the condensate cloud.
Resumo:
The nonequilibrium phase transition of the one-dimensional triplet-creation model is investigated using the n-site approximation scheme. We find that the phase diagram in the space of parameters (gamma, D), where gamma is the particle decay probability and D is the diffusion probability, exhibits a tricritical point for n >= 4. However, the fitting of the tricritical coordinates (gamma(t), D(t)) using data for 4 <= n <= 13 predicts that gamma(t) becomes negative for n >= 26, indicating thus that the phase transition is always continuous in the limit n -> infinity. However, the large discrepancies between the critical parameters obtained in this limit and those obtained by Monte Carlo simulations, as well as a puzzling non-monotonic dependence of these parameters on the order of the approximation n, argue for the inadequacy of the n-site approximation to study the triplet-creation model for computationally feasible values of n.
Resumo:
Using Heavy Quark Effective Theory with non-perturbatively determined parameters in a quenched lattice calculation, we evaluate the splittings between the ground state and the first two radially excited states of the B(s) system at static order. We also determine the splitting between first excited and ground state, and between the B(s)* and B(s) ground states to order 1/m(b). The Generalized Eigenvalue Problem and the use of all-to-all propagators are important ingredients of our approach.
Resumo:
For a fixed family F of graphs, an F-packing in a graph G is a set of pairwise vertex-disjoint subgraphs of G, each isomorphic to an element of F. Finding an F-packing that maximizes the number of covered edges is a natural generalization of the maximum matching problem, which is just F = {K(2)}. In this paper we provide new approximation algorithms and hardness results for the K(r)-packing problem where K(r) = {K(2), K(3,) . . . , K(r)}. We show that already for r = 3 the K(r)-packing problem is APX-complete, and, in fact, we show that it remains so even for graphs with maximum degree 4. On the positive side, we give an approximation algorithm with approximation ratio at most 2 for every fixed r. For r = 3, 4, 5 we obtain better approximations. For r = 3 we obtain a simple 3/2-approximation, achieving a known ratio that follows from a more involved algorithm of Halldorsson. For r = 4, we obtain a (3/2 + epsilon)-approximation, and for r = 5 we obtain a (25/14 + epsilon)-approximation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
For each ideal of multilinear mappings M we explicitly construct a corresponding ideal (a)M such that multilinear forms in (a)M are exactly those which can be approximated, in the uniform norm, by multilinear forms in M. This construction is then applied to finite type, compact, weakly compact and absolutely summing multilinear mappings. It is also proved that the correspondence M bar right arrow (a)M. IS Aron-Berner stability preserving.
Resumo:
We design and investigate a sequential discontinuous Galerkin method to approximate two-phase immiscible incompressible flows in heterogeneous porous media with discontinuous capillary pressures. The nonlinear interface conditions are enforced weakly through an adequate design of the penalties on interelement jumps of the pressure and the saturation. An accurate reconstruction of the total velocity is considered in the Raviart-Thomas(-Nedelec) finite element spaces, together with diffusivity-dependent weighted averages to cope with degeneracies in the saturation equation and with media heterogeneities. The proposed method is assessed on one-dimensional test cases exhibiting rough solutions, degeneracies, and capillary barriers. Stable and accurate solutions are obtained without limiters. (C) 2010 Elsevier B.V. All rights reserved.