85 resultados para Bagasse, Soda Pulping, Delignification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 A degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments based on a 2(3) central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar-alcohol mill. The independent variables selected for study were temperature, varied from 112.5A degrees C to 157.5A degrees C, residence time, varied from 5.0 to 35.0 min, and sulfuric acid concentration, varied from 0.0% to 3.0% (w/v). Bagasse loading of 15% (w/w) was used in all experiments. Statistical analysis of the experimental results showed that all three independent variables significantly influenced the response variables, namely the bagasse solubilization, efficiency of xylose recovery in the hemicellulosic hydrolysate, efficiency of cellulose enzymatic saccharification, and percentages of cellulose, hemicellulose, and lignin in the pretreated solids. Temperature was the factor that influenced the response variables the most, followed by acid concentration and residence time, in that order. Although harsher pretreatment conditions promoted almost complete removal of the hemicellulosic fraction, the amount of xylose recovered in the hemicellulosic hydrolysate did not exceed 61.8% of the maximum theoretical value. Cellulose enzymatic saccharification was favored by more efficient removal of hemicellulose during the pretreatment. However, detoxification of the hemicellulosic hydrolysate was necessary for better bioconversion of the sugars to ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugarcane bagasse was pretreated with diluted sulfuric acid to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH). Experiments were conducted in laboratory and semi-pilot reactors to optimize the xylose recovery and to reduce the generation of sugar degradation products, as furfural and 5-hydroxy-methylfurfural (HMF). The hydrolysis scale-up procedure was based on the H-Factor, that combines temperature and residence time and employs the Arrhenius equation to model the sulfuric acid concentration (100 mg(acid)/g(dm)) and activation energy (109 kJ/mol). This procedure allowed the mathematical estimation of the results through simulation of the conditions prevailing in the reactors with different designs. The SBHH obtained from different reactors but under the same H-Factor of 5.45 +/- 0.15 reached similar xylose yield (approximately 74%) and low concentration of sugar degradation products, as furfural (0.082 g/L) and HMF (0.0071 g/L). Also, the highest lignin degradation products (phenolic compounds) were rho-coumarilic acid (0.15 g/L) followed by ferulic acid (0.12 g/L) and gallic acid (0.035 g/L). The highest concentration of ions referred to S (3433.6 mg/L), Fe (554.4 mg/L), K (103.9 mg/L), The H-Factor could be used without dramatically altering the xylose and HMF/furfural levels. Therefore, we could assume that H-Factor was directly useful in the scale-up of the hemicellulosic hydrolysate production. (C) 2009 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A process has been elaborated for one-step low lignin content sugarcane bagasse hemicellulose extraction using alkaline solution of hydrogen peroxide. To maximize the hemicellulose yields several extraction conditions were examined applying the 2(4) factorial design: H(2)O(2) concentration from 2 to 6% (w/v), reaction time from 4 to 16 h, temperature from 20 to 60 degrees C, and magnesium sulfate absence or presence (0.5%, w/v). This approach allowed selection of conditions for the extraction of low and high lignin content hemicellulose. At midpoint the yield of hemicellulose was 94.5% with more than 88% of lignin removed. Lignin removal is suppressed at low extraction temperatures and in the absence of magnesium sulfate. Hemicellulose in 86% yield with low lignin content (5.9%) was obtained with 6% H(2)O(2) treatment for 4 h and 20 degrees C. This hemicellulose is much lighter in color than samples obtained at the midpoint condition and was found suitable for subsequent enzymatic hydrolysis. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to correlate the efficiency of enzymatic hydrolysis of the cellulose contained in a sugarcane bagasse sample pretreated with dilute H(2)SO(4) with the levels of independent variables such as initial content of solids and loadings of enzymes and surfactant (Tween 20), for two cellulolytic commercial preparations. The preparations, designated cellulase I and cellulase II, were characterized regarding the activities of total cellulases, endoglucanase, cellobiohydrolase, cellobiase, beta-glucosidase, xylanase, and phenoloxidases (laccase, manganese and lignin peroxidases), as well as protein contents. Both extracts showed complete cellulolytic complexes and considerable activities of xylanases, without activities of phenoloxidases. For the enzymatic hydrolyses, two 2(3) central composite full factorial designs were employed to evaluate the effects caused by the initial content of solids (1.19-4.81%, w/w) and loadings of enzymes (1.9-38.1 FPU/g bagasse) and Tween 20 (0.0-0.1 g/g bagasse) on the cellulose digestibility. Within 24 h of enzymatic hydrolysis, all three independent variables influenced the conversion of cellulose by cellulase I. Using cellulase II, only enzyme and surfactant loadings showed significant effects on cellulose conversion. An additional experiment demonstrated the possibility of increasing the initial content of solids to values much higher than 4.81% (w/w) without compromising the efficiency of cellulose conversion, consequently improving the glucose concentration in the hydrolysate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study provides a preliminary contribution to the development of a bioprocess for the contintious production of xylitol from hemicellulosic hydrolyzate utilizing Candida guilliermondii cells immobilized onto natural sugarcane bagasse fibers. To this purpose, cells of this yeast were submitted to batch tests of ""in situ"" adsorption onto crushed and powdered sugarcane bagasse after treatment with 0.5 M NaOH. The results obtained on a xylose-based semi-synthetic medium were evaluated in terms of immobilization efficiency, cell retention and specific growth rates of suspended, immobilized and total cells. The first two parameters were shown to increase along the immobilization process, reached maximum values of 50.5% and 0.31 g immobilized cells/g bagasse after 21 h and then sharply decreased. The specific growth rate of suspended cells continuously increased during the immobilization tests, while that of the immobilized ones, after an initial growth, exhibited decreasing values. Under the conditions selected for cell immobilization, fermentation also took place with promising results. The yields of xylitol and biomass on consumed xylose were 0.65 and 0.18 g/g, respectively, xylitol and biomass productivities 0.66 and 0.13 g L-1 h(-1), and the efficiency of xylose-to-xylitol bioconversion was 70.8%. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this work was to investigate three packing materials (polyurethane foam, sugar-cane bagasse, and coconut fibre) for biofiltration of a gaseous mixture containing hydrogen sulphide (H(2)S). Mixed cultures were obtained from two sources, aerated submerged biofilters and activated sludge, and were utilised as inoculums. Biofilters reached 100% removal efficiency after two clays of operation. The empty bed residence time was 495 for each of the biofilters. The reactors were operated simultaneously, and the inlet concentrations of H(2)S varied between 184 and 644 ppmv during the long-term continuous operation of the biofilters (100 clays). Average removal efficiencies remained above 99.3%, taking into consideration the entire period of operation. Average elimination capacities reached by the biofilters packed with polyurethane foam, coconut fibre, and sugarcane bagasse were in the range of 17.8-66.6; 18.9-68.8, and 18.7-72.9g m(-3) h(-1), respectively. Finally, we concluded that the packing materials tested in this work are appropriate for the long-term biofiltration of hydrogen sulphide. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the potential of the fibrous material obtained from ethanol-water fractionation of bagasse as reinforcement of thermoplastic starches in order to improve their mechanical properties. The composites were elaborated using matrices of corn and cassava starches plasticized with 30 wt%glycerin. The mixtures (0,5,10 and 15 wt% bagasse fiber) were elaborated in a rheometer at 150 degrees C. The mixtures obtained were pressed on a hot plate press at 155 degrees C. The test specimens were obtained according to ASTM D638. Tensile tests, moisture absorption tests for 24 days (20-23 degrees C and 53% RH, ASTM E104), and dynamic-mechanical analyses (DMA) in tensile mode were carried out. Images by scanning electron microscopy (SEM) and X-ray diffraction were obtained. Fibers (10 wt% bagasse fiber) increased tensile strength by 44% and 47% compared to corn and cassava starches, respectively. The reinforcement (15 wt% bagasse fiber) increased more than fourfold the elastic modulus on starch matrices. The storage modulus at 30 C (E(30 degrees C)`) increased as the bagasse fiber content increased, following the trend of tensile elastic modulus. The results indicate that these fibers have potential applications in the development of biodegradable composite materials. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxy-coal combustion is a viable technology, for new and existing coal-fired power plants, as it facilitates carbon capture and, thereby, can mitigate climate change. Pulverized coals of various ranks, biomass, and their blends were burned to assess the evolution of combustion effluent gases, such as NO(x), SO(2), and CO, under a variety of background gas compositions. The fuels were burned in an electrically heated laboratory drop-tube furnace in O(2)/N(2) and O(2)/CO(2) environments with oxygen mole fractions of 20%, 40%, 60%, 80%, and 100%, at a furnace temperature of 1400 K. The fuel mass flow rate was kept constant in most cases, and combustion was fuel-lean. Results showed that in the case of four coals studied, NO(x) emissions in O(2)/CO(2) environments were lower than those in O(2)/N(2) environments by amounts that ranged from 19 to 43% at the same oxygen concentration. In the case of bagasse and coal/bagasse blends, the corresponding NO(x) reductions ranged from 22 to 39%. NO(x) emissions were found to increase with increasing oxygen mole fraction until similar to 50% O(2) was reached; thereafter, they monotonically decreased with increasing oxygen concentration. NO(x) emissions from the various fuels burned did not clearly reflect their nitrogen content (0.2-1.4%), except when large content differences were present. SO(2) emissions from all fuels remained largely unaffected by the replacement of the N(2) diluent gas with CO(2), whereas they typically increased with increasing sulfur content of the fuels (0.07-1.4%) and decreased with increasing calcium content of the fuels (0.28-2.7%). Under the conditions of this work, 20-50% of the fuel-nitrogen was converted to NO(x). The amount of fuel-sulfur converted to SO(2) varied widely, depending on the fuel and, in the case of the bituminous coal, also depending on the O(2) mole fraction. Blending the sub-bituminous coal with bagasse reduced its SO(2) yields, whereas blending the bituminous coal with bagasse reduced both its SO(2) and NO(x) yields. CO emissions were generally very low in all cases. The emission trends were interpreted on the basis of separate combustion observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of several carbon sources on the production of mycelial-bound beta-glucosidase by Humicola grisea var. thermoidea in submerged fermentation was investigated. Maximum production occurred when cellulose was present in the culture medium, but higher specific activities were achieved with cellobiose or sugarcane bagasse. Xylose or glucose (1%) in the reaction medium stimulated beta-glucosidase activity by about 2-fold in crude extracts from mycelia grown in sugarcane bagasse. The enzyme was purified by ammonium sulfate precipitation, followed by Sephadex G-200 and DEAE-cellulose chromatography, showing a single band in PAGE and SDS-PAGE. The beta-glucosidase had a carbohydrate content of 43% and showed apparent molecular masses of 57 and 60 kDa, as estimated by SDS-PAGE and gel filtration, respectively. The optimal pH and temperature were 6.0 and 50 degrees C, respectively. The purified enzyme was thermostable up to 60 min in water at 55 degrees C and showed half-lives of 7 and 14 min when incubated in the absence or presence of 50 mM glucose, respectively, at 60 degrees C. The enzyme hydrolyzed p-nitrophenyl-beta-D-glucopyranoside, p-nitrophenyl-beta-D-galactopyranoside, p-nitrophenyl-beta-D-fucopyranoside, p-nitrophenyl-beta-D-xylopyranoside, o-nitrophenyl-beta-D-galactopyranoside, lactose, and cellobiose. The best synthetic and natural substrates were p-nitrophenyl-beta-D-fucopyranoside and cellobiose, respectively. Purified enzyme activity was stimulated up to 2-fold by glucose or xylose at concentrations from 25 to 200 mM. The addition of purified or crude beta-glucosidase to a reaction medium containing Trichoderma reesei cellulases increased the saccharification of sugarcane bagasse by about 50%. These findings suggest that H. grisea var. thermoidea beta-glucosidase has a potential for biotechnological applications in the bioconversion of lignocellulosic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For proper management of wastes and their possible recycling as raw materials, complete characterization of the materials is necessary to evaluate the main scientific aspects and potential applications. The current paper presents a detailed scientific study of different Brazilian sugar cane bagasse ashes from the cogeneration industry as alternative cementing materials (active addition) for cement manufacture. The results show that the ashes from the industrial process (filter and bottom ones) present different chemical and mineralogical compositions and pozzolanic properties as well. As a consequence of its nature, the kinetic rate constant (K) states that the pozzolanic activity is null for the bottom ash and very low for the filter ash with respect to a sugar cane bagasse ash obtained in the laboratory under controlled burning conditions (reference). The scarce pozzolanic activity showed by ashes could be related to a possible contamination of bagasse wastes (with soils) before their use as alternative combustibles. For this reason, an optimization process for these wastes is advisable, if the ashes are to be used as pozzolans. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study of the pozzolanic reaction kinetics between calcium hydroxide and a mixture of sugar cane bagasse with 20 and 30% of clay, burned at 800 and 1000 degrees C (SCBCA) by electrical conductivity measurements. A kinetic-diffusive model produced in previous studies by some of the authors was used. The model was fitted to the experimental data, which allowed the computation of the kinetic parameters of the pozzolanic reaction (reaction rate constant and free energy of activation) that rigorously characterised the pozzolanic activity of the materials. The results show that SCBCA demonstrated reactivity and good pozzolanic qualities in the range 800-1000 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The difficulty of preparing monodisperse lignin fractions on a large scale is a limiting factor in many applications. The present paper addresses this problem by examining the properties and size-exclusion behavior of lignin isolated by the acetosolv pulping process from post-extraction crushed sugarcane bagasse. The isolated lignin was subjected to a solvent pretreatment, followed by preparative gel permeation chromatography fractionation. The fractions were analyzed by high-performance size-exclusion chromatography (HPSEC) and these samples showed a great decrease in polydispersity, compared to the original acetosolv lignin. Several fractions of very low polydispersity, close to unity, were employed as calibration curve standards in HPSEC analysis. This original analytical approach allowed calibration with these lignin fractions to be compared with the polystyrene standards that are universally employed for lignin molecular mass determination. This led to a noteworthy result, namely that the lignin fractions and polystyrene standards showed very similar behavior over a large range of molecular masses in a typical HPSEC analysis of acetosolv lignin. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-density polyethylene was filled with cellulose fibres from sugar cane bagasse obtained from organosolv/supercritical carbon dioxide pulping process. The fibres were also used after chemical modification with octadecanoyl and dodecanoyl chloride acids. The morphology, thermal properties, mechanical properties in both the linear and nonlinear range, and the water absorption behaviour of ensuing composites were tested. The evidence of occurrence of the chemical modification was checked by X-ray photoelectron spectrometry. The degree of polymerisation of the fibres and their intrinsic properties (zero tensile strength) were determined. It clearly appeared that the surface chemical modification of cellulose fibres resulted in improved interfacial adhesion with the matrix and higher dispersion level. However, composites did not show improved mechanical performances when compared to unmodified fibres. This surprising result was ascribed to the strong lowering of the degree of polymerisation of cellulose fibres (as confirmed by the drastic decrease of their zero tensile strength) after chemical treatment despite the mild conditions used. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treated sisal fibers were used as reinforcement of polypropylene (PP) composites, with maleic anhydride-grafted PP (MAPP) as coupling agent. The composites were made by melting processing of PP with the fiber in a heated roller followed by multiple extrusions in a single-screw extruder. Injection molded specimens were produced for the characterization of the material. In order to improve the adhesion between fiber and matrix and to eliminate odorous substances, sisal fibers were treated with boiling water and with NaOH solutions at 3 and 10 wt.%. The mechanical properties of the composites were assessed by tensile, bend and impact tests. Additionally, the morphology of the composites and the adhesion at he fiber-matrix interface were analyzed by SEM. The fiber treatment led to very light and odorless materials, with yields of 95, 74 and 62 wt.% for treatments with hot water, 3 and 10 wt.% soda solution respectively. Fiber treatment caused an appreciable change in fiber characteristics, yet the mechanical properties under tensile and flexural tests were not influenced by that treatment. Only the impact strength increased in the composites with alkali-treated sisal fibers.