133 resultados para BETA-SYNTHASE GENE
Resumo:
Glutamatergic transmission through metabotropic and ionotropic receptors, including kainate receptors, plays an important role in the nucleus of the solitary tract (NTS) functions. Glutamate system may interact with several other neurotransmitter systems which might also be influenced by steroid hormones. In the present study we analyzed the ability of systemic kainate to stimulate rat NTS neurons, which was evaluated by c-Fos as a marker of neuronal activation, and also to change the levels of NTS neurotransmitters such as GABA, NPY, CGRP, GAL, NT and NO by means of quantitative immunohistichemistry combined with image analysis. The analysis was also performed in adrenalectomized and kainate stimulated rats in order to evaluate a possible role of adrenal hormones on NTS neurotransmission. Male Wistar rats (3 month-old) were used in the present study. A group of 15 rats was submitted either to bilateral adrenalectomy or sham operation. Forty-eight hours after the surgeries, adrenalectomized rats received a single intraperitoneal injection of kainate (12 mg/kg) and the sham-operated rats were injected either with saline or kainate and sacrificed 8 hours later. The same experimental design was applied in a group of rats in order to register the arterial blood pressure. Systemic kainate decreased the basal values of mean arterial blood pressure (35%) and heart rate (22%) of sham-operated rats, reduction that were maintained in adrenalectomized rats. Kainate triggered a marked elevation of c-Fos positive neurons in the NTS which was 54% counteracted by adrenalectomy. The kainate activated NTS showed changes in the immunoreactive levels of GABA (143% of elevation) and NPY (36% of decrease), which were not modified by previous ablation of adrenal glands. Modulation in the levels of CGRP, GAL and NT immunoreactivities were only observed after kainate in the adrenalectomized rats. Treatments did not alter NOS labeling. It is possible that modulatory function among neurotransmitter systems in the NTS might be influenced by steroid hormones and the implications for central regulation of blood pressure or other visceral regulatory mechanisms control should be further investigated.
Resumo:
The antihypertensive effects of angiotensin-converting enzyme inhibitors (ACEi) are explained, at least in part, by enhanced bradykinin-dependent nitric oxide (NO) formation and decreased angiotensin II-induced oxidative stress and vasoconstriction. We examined for the first time whether treatment with enalapril increases the plasma levels of markers of NO formation and decreases oxidative stress in mild to moderate hypertensive patients. Eighteen untreated hypertensive patients were treated with enalapril 10 mg/day (n = 10) or 20 mg/day (n = 8) for 60 days. Eighteen normotensive healthy controls were followed for the same period. Venous blood samples were collected at baseline and after 30/60 days of treatment with enalapril. Plasma NOx (nitrites + nitrates) concentrations were determined by using the Griess reaction. Plasma nitrite and whole blood nitrite concentrations were determined by using an ozone-based chemiluminescence assay. Plasma thiobarbituric acid-reactive species (TBARS) and 8-isoprostane concentrations were determined by a fluorimetric method and by ELISA, respectively. Treatment with enalapril decreased blood pressure in hypertensive patients. However, we found no significant changes in plasma NOx, nitrite, whole blood nitrite, and in the levels of markers of oxidative stress in both normotensive controls and hypertensive patients treated with enalapril. Our data show that enalapril 10-20 mg/day does not affect the concentrations of relevant markers of NO formation or markers of oxidative stress in mild to moderately hypertensive subjects, despite satisfactory blood pressure control. Our findings do not rule out the possibility that ACEi may produce such effects in more severely hypertensive patients treated with higher doses of ACEi.
Resumo:
Objective: The aim of our study is to investigate whether genetic polymorphisms in the endothelial nitric oxide synthase (eNOS) gene (in the promoter region T(-786)C, in exon 7 (Glu298Asp) and in intron 4 (4b/4a)) or eNOS haplotypes are associated with hypertension in obese children and adolescents. Methods: We genotyped 175 healthy (controls), 110 normotensive obese and 73 hypertensive obese children and adolescents. Genotypes were determined by Taqman allele discrimination assay and real-time PCR, and by PCR followed by fragment separation by electrophoresis. We compared the distribution of eNOS genotypes, alleles and haplotypes in the three study groups of subjects. We have also measured whole-blood nitrite concentrations. Results: The 4a4a genotype for the intron 4 polymorphism was more common in normotensive obese and hypertensive obese (P < 0.01). The AspAsp genotype for Glu298Asp polymorphism was less common in normotensive obese (P < 0.02). No significant differences were found in allele distributions for the three eNOS polymorphisms. However, the haplotype combining the C, 4b and Glu variants for the three polymorphisms was more common in hypertensive obese than in normotensive obese or control children and adolescents (odds ratio = 2.28 and 2.79, respectively; 95% confidence interval: 1.31-4.31 and 1.39-5.64, respectively; both P < 0.00625). This haplotype was not associated with significantly different nitrite concentrations (P > 0.05). Conclusions: Our findings suggest that the eNOS haplotype, C b Glu, is associated with hypertension in obese children and adolescents. Further studies examining the possible interactions of eNOS haplotypes with environmental factors and other genetic markers involved in the development of obesity and its complications are warranted. International Journal of Obesity (2011) 35, 387-392; doi:10.1038/ijo.2010.146; published online 27 July 2010
Resumo:
Pre-eclampsia (PE) is associated with decreased nitric oxide (NO) formation. However, no previous study has examined whether genetic variations in the endothelial NO synthase (eNOS) affect this alteration. We hypothesized that PE decreases NO formation depending on eNOS polymorphisms. We examined how three eNOS polymorphisms [T-786C, rs2070744; Glu298Asp, rs1799983; 27 bp variable number of tandem repeats (VNTR) in intron 4] affect plasma nitrite concentrations in 205 pregnant women [107 healthy pregnant (HP) and 98 PE]. Genotypes were determined and eNOS haplotypes were inferred using the PHASE 2.1 program. The plasma nitrite concentrations were determined using an ozone-based chemiluminescence assay. The Glu298Asp polymorphism had no effects on the plasma nitrite concentrations. Higher nitrite levels were found in HP women with the CC versus TT genotype for the T-786C polymorphism (277.9 +/- 19.5 versus 140.6 +/- 8.2 nM; P < 0.05). Lower nitrite levels were found in healthy women with the 4a4a versus 4b4b genotype for the VNTR polymorphism (95.1 +/- 3.3 versus 216.1 +/- 16.8 nM; P < 0.05). No effects of genotypes were found in PE women (all P > 0.05). The `C Glu b` haplotype was more frequent in the HP group than in the PE group (20 versus 5; P = 0.0044). This haplotype was associated with higher nitrite concentrations than the other haplotypes in healthy pregnancies (P < 0.05). No differences in nitrite concentrations were found among PE women with different eNOS haplotypes (P > 0.05). These findings indicate that eNOS polymorphisms affect endogenous NO formation in normal pregnancy, but not in PE, and that the `C Glu b` haplotype may protect against the development of PE by increasing endogenous NO formation.
Resumo:
The interindividual variation in the activity of xenobiotic metabolizing enzymes and DNA repair genes could modify an individual`s risk of recurrent malignancy and response to therapy. We investigated whether ALL outcome was related to polymorphisms in genes CYP2D6. MPO, EPHX1, NQO1, TS, XPD and XRCC1 in 95 consecutive ALL children by PCR or PCR-FRLP techniques. Polymorphisms in genes NQO1 and TS were associated with a significantly slow response to induction chemotherapy and NQO1 was also associated with a lower five-year event-free survival. This study suggests that polymorphisms of NQO1 and TS could be important for patient response to induction therapy and for treatment outcome. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: Nitric oxide (NO) is a major regulator of cardiovascular homeostasis and has anti-atherogenic properties. Reduced NO formation is associated with endothelial dysfunction and with cardiovascular risk factors. Although NO downregulates the expression and activity of the pro-atherogenic enzyme matrix metalloproteinase-9 (MMP-9), no previous clinical study has examined whether endogenous NO formation is inversely associated with the circulating levels of pro-MMP-9, which are associated with cardiovascular events. We examined this hypothesis in 175 healthy male subjects who were non-smokers. Methods: To assess NO bioavailability, the plasma concentrations of nitrite, nitrate, and cGMP were determined using an ozone-based chemiluminescence assay and an enzyme immunoassay. Pro-MMP-9 and pro-MMP-2 levels were measured in plasma samples by gelatin zymography. Results: We found significant negative correlations between pro-MMP-9 levels and plasma nitrite (P=0.035, rs=-0.159), nitrate (P=0.040, rs=-0.158), and cGMP (P=0.011, rs=-0.189) concentrations. However, no significant correlations were found between pro-MMP-2 levels and the plasma concentrations of markers of NO bioavailability (all P>0.05). Conclusions: There is an inverse relationship between markers of NO formation and plasma MMP-9 levels. This finding may shed some light on the possible mechanisms involved in the increased cardiovascular risk of apparently healthy subjects with low NO bioavailability or high circulating levels of pro-MMP-9. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Carpenter syndrome, a rare autosomal recessive disorder characterized by a combination of craniosynostosis, polysyndactyly, obesity, and other congenital malformations, is caused by mutations in RAB23, encoding a member of the Rab-family of small GTPases. In 15 out of 16 families previously reported, the disease was caused by homozygosity for truncating mutations, and currently only a single missense mutation has been identified in a compound heterozygote. Here, we describe a further 8 independent families comprising 10 affected individuals with Carpenter syndrome, who were positive for mutations in RAB23. We report the first homozygous missense mutation and in-frame deletion, highlighting key residues for RAB23 function, as well as the first splice-site mutation. Multi-suture craniosynostosis and polysyndactyly have been present in all patients described to date, and abnormal external genitalia have been universal in boys. High birth weight was not evident in the current group of patients, but further evidence for laterality defects is reported. No genotype-phenotype correlations are apparent. We provide experimental evidence that transcripts encoding truncating mutations are subject to nonsense-mediated decay, and that this plays an important role in the pathogenesis of many RAB23 mutations. These observations refine the phenotypic spectrum of Carpenter syndrome and offer new insights into molecular pathogenesis. (C) 2011 Wiley-Liss, Inc.
Resumo:
The definition of the nerve cell types of the myenteric plexus of the mouse small intestine has become important, as more researchers turn to the use of mice with genetic mutations to analyze roles of specific genes and their products in enteric nervous system function and to investigate animal models of disease. We have used a suite of antibodies to define neurons by their shapes, sizes, and neurochemistry in the myenteric plexus. Anti-Hu antibodies were used to reveal all nerve cells, and the major subpopulations were defined in relation to the Hu-positive neurons. Morphological Type II neurons, revealed by anti-neurofilament and anti-calcitonin gene-related peptide antibodies, represented 26% of neurons. The axons of the Type II neurons projected through the circular muscle and submucosa to the mucosa. The cell bodies were immunoreactive for choline acetyltransferase (ChAT), and their terminals were immunoreactive for vesicular acetylcholine transporter (VAChT). Nitric oxide synthase (NOS) occurred in 29% of nerve cells. Most were also immunoreactive for vasoactive intestinal peptide, but they were not tachykinin (TK)-immunoreactive, and only 10% were ChAT-immunoreactive. Numerous NOS terminals occurred in the circular muscle. We deduced that 90% of NOS neurons were inhibitory motor neurons to the muscle (26% of all neurons) and 10% (3% of all neurons) were interneurons. Calretinin immunoreactivity was found in a high proportion of neurons (52%). Many of these had TK immunoreactivity. Small calretinin neurons were identified as excitatory neurons to the longitudinal muscle (about 20% of neurons, with ChAT/calretinin/+/- TK chemical coding). Excitatory neurons to the circular muscle (about 10% of neurons) had the same coding. Calretinin immunoreactivity also occurred in a proportion of Type II neurons. Thus, over 90% of neurons in the myenteric plexus of the mouse small intestine can be currently identified by their neurochemistry and shape.
Resumo:
A regimen of low-protein diet induces a reduction of pancreatic islet function that is associated with development of metabolic disorders including diabetes and obesity afterward. In the present study, the influence of leucine supplementation on metabolic parameters, insulin secretion to glucose and to amino acids, as well as the levels of proteins that participate in the phosphatidylinositol 3-phosphate kinase (PI3K) pathway was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal protein diet (17%) without (NP) or with leucine supplementation (NPL) or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine was given in the drinking water during the last 4 weeks. As indicated by the intraperitoneal glucose tolerance test, LPL rats exhibited increased glucose tolerance as compared with NPL group. Both NPL and LPL rats had higher circulating insulin levels than controls. The LPL rats also showed increased insulin secretion by pancreatic islets in response to glucose or arginine compared with those observed in islets from LP animals. Glucose oxidation was significantly reduced in NPL, LP, and LPL isolated islets as compared with NP; but no alteration was observed for leucine and glutamate oxidation among the 4 groups. Western blotting analysis demonstrated increased PI3K and mammalian target protein of rapamycin protein contents in LPL compared with LP islets. A significant increase in insulin-induced insulin receptor substrate I associated PI3K activation was also observed in LPL compared with LP islets. These findings indicate that leucine supplementation can augment islet function in malnourished rats and that activation of the PI3K/maminalian target protein of rapamycin pathway may play a role in this process. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Chagas` disease is accompanied by severe anemia and oxidative stress, which may contribute to mortality. In this study, we investigated the role of 5-lipoxygenase (5-LO) in the control of parasitism and anemia associated with oxidative damage of erythrocytes in experimental Trypanosoma cruzi infection. Wild-type C57BL/6, 129Sv mice treated or not with nordihydroguaiaretic acid (NDGA, 5-LO inhibitor), mice lacking the 5-LO enzyme gene (5-LO(-/-)) and inducible nitric oxide synthase gene (iNOS(-/-)) were infected with the Y strain of T cruzi. impairment of 5-LO resulted in increased numbers of trypomastigote forms in the blood and amastigote forms in the heart of infected mice. We assessed oxidative stress in erythrocytes by measuring oxygen uptake, induction time and chemiluminescence following treatment with tert-butyl hydroperoxide (TBH). Our results show that 5-LO metabolites increased lipid peroxidation levels in erythrocytes during the early phase of murine T cruzi infection. NDGA treatment reduced oxidative damage of erythrocytes in C57BL/6 T cruzi-infected mice but not in C57BL/6 iNOS-/- infected mice, showing that the action of NDGA is dependent on endogenous nitric oxide (NO). In addition, our results show that 5-LO metabolites do not participate directly in the development of anemia in infected mice. We conclude that 5-LO products may not only play a major role in controlling heart tissue parasitism, i.e., host resistance to acute infection with T cruzi in vivo, but in the event of an infection also play an important part in erythrocyte oxidative stress, an NO-dependent effect. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Phosphoribosyl pyrophosphate synthetase (PRS-EC:2.7.6.1) is an important enzyme present in several metabolic pathways, thus forming a complex family of isoenzymes. However, plant PRS enzymes have not been extensively investigated. In this study, a sugarcane prs gene has been characterized from the Sugar Cane Expressed Sequence Tag Genome Project. This gene contains a 984-bp open reading frame encoding a 328-amino acid protein. The predicted amino acid sequence has 77% and 78% amino acid sequence identity to Arabidopsis thaliana and Spinacia oleracea PRS4, respectively. The assignment of sugarcane PRS as a phosphate-independent PRS isoenzyme (Class II PRS) is verified following enzyme assay and phylogenetic reconstruction of PRS homologues. To gain further insight into the structural framework of the phosphate independence of sugarcane PRS, a molecular model is described. This model reveals the formation of two conserved domains elucidating the structural features involved in sugarcane PRS phosphate independence. The recombinant PRS retains secondary structure elements and a quaternary arrangement consistent with known PRS homologues, based on circular dichroism measurements.
Resumo:
Background/Aim: Chagas` disease is caused by Trypanosoma cruzi and occurs in most Latin American countries. The protozoan may colonize the central nervous system (CNS) of immune-compromised human hosts, thus causing neuronal disorders. Systemic control of the intracellular forms of the parasite greatly depends on the establishment of a TH1 response and subsequent nitric oxide (NO) release. At the CNS, it is known that low concentrations of NO promote neuronal survival and growth, while high concentrations exert toxic effects and neuron death. Accounting for NO production by astrocytes is the glia-derived factor S100 beta, which is overproduced in some neurodegenerative diseases. In the current work, we studied the expression of NO, interferon (IFN)-gamma and S100 beta in the spinal cord tissue of IL-12p40KO mice infected with T. cruzi, a model of neurodegenerative process. Methods: IL-12p40KO and wild-type (WT) female mice infected with T. cruzi Sylvio X10/4 (10(5) trypomastigotes, intraperitoneally) were euthanized when IL-12p40KO individuals presented limb paralysis. Spinal cord sections were submitted to immunohistochemical procedures for localization of neurofilament, laminin, nitrotyrosine, NO synthases (NOS), IFN-gamma and S100 beta. The total number of neurons was estimated by stereological analysis and the area and intensity of immunoreactivities were assessed by microdensitometric/morphometric image analysis. Results: No lesion was found in the spinal cord sections of WT mice, while morphological disarrangements, many inflammatory foci, enlarged vessels, amastigote nests and dying neurons were seen at various levels of IL-12p40KO spinal cord. Compared to WT mice, IL-12p40KO mice presented a decrement on total number of neurons (46.4%, p<0.05) and showed increased values of immunoreactive area for nitrotyrosine (239%, p<0.01) and NOS (544%, p<0.001). Moreover, the intensity of nitrotyrosine (16%, p<0.01), NOS (38%, p<0.05) and S100 beta (21%, p<0.001) immunoreactivities were also augmented. No IFN-gamma labeled cells were seen in WT spinal cord tissue, contrary to IL-12p40KO tissue that displayed inflammatory infiltrating cells and also some parenchymal cells positively labeled.Conclusion: We suggest that overproduction of NO may account for neuronal death at the spinal cord of T. cruzi-infected IL-12p40KO mice and that IFN-gamma and S100 beta may contribute to NOS activation in the absence of IL-12. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Background: Glycogen storage disease type 0 is an autosomal recessive disease presenting in infancy or early childhood and characterized by ketotic hypoglycemia after prolonged fasting and postprandial hyperglycemia and hyperlactatemia. Sixteen different mutations have been identified to date in the gene which encodes hepatic glycogen synthase, resulting in reduction of glycogen storage in the liver. Case Presentation: Biochemical evaluation as well as direct sequencing of exons and exon-intron boundary regions of the GYS2 gene were performed in a patient presenting fasting hypoglycemia and postprandial hyperglycemia and her parents. The patient was found to be compound heterozygous for one previously reported nonsense mutation (c. 736 C>T; R243X) and a novel frameshift mutation (966_967delGA/insC) which introduces a stop codon 21 aminoacids downstream from the site of the mutation that presumably leads to loss of 51% of the COOH-terminal part of the protein. The glycemia and lactatemia of the parents after an oral glucose tolerance test were evaluated to investigate a possible impact of the carrier status on the metabolic profile. The mother, who presented a positive family history of type 2 diabetes, was classified as glucose intolerant and the father, who did not exhibit metabolic changes after the glucose overload, had an antecedent history of hypoglycemia after moderate alcohol ingestion. Conclusion: The current results expand the spectrum of known mutations in GYS2 and suggest that haploinsufficiency could explain metabolic abnormalities in heterozygous carriers in presence of predisposing conditions.
Resumo:
Background: Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC) and ischemic (IC) cardiomyopathies. Methodology/Principal Findings: Myocardium homogenates from CCC (N = 5), IC (N = 5) and IDC (N = 5) patients, as well as from heart donors (N = 5) were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit) and muscular creatine kinase (CKM) and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. Conclusions/Significance: The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies.
Resumo:
Background: The purpose of this study was to evaluate collagen deposition, mRNA collagen synthesis and TGFbeta expression in the lung tissue in an experimental model of scleroderma after collagen V-induced nasal tolerance. Methods: Female New Zealand rabbits (N = 12) were immunized with 1 mg/ml of collagen V in Freund's adjuvant (IM). After 150 days, six immunized animals were tolerated by nasal administration of collagen V ( 25 mu g/day) (IM-TOL) daily for 60 days. The collagen content was determined by morphometry, and mRNA expressions of types I, III and V collagen were determined by Real-time PCR. The TGF-beta expression was evaluated by immunostaining and quantified by point counting methods. To statistic analysis ANOVA with Bonferroni test were employed for multiple comparison when appropriate and the level of significance was determined to be p < 0.05. Results: IM-TOL, when compared to IM, showed significant reduction in total collagen content around the vessels (0.371 +/- 0.118 vs. 0.874 +/- 0.282, p < 0.001), bronchioles (0.294 +/- 0.139 vs. 0.646 +/- 0.172, p < 0.001) and in the septal interstitium (0.027 +/- 0.014 vs. 0.067 +/- 0.039, p = 0.026). The lung tissue of IM-TOL, when compared to IM, showed decreased immunostaining of types I, III and V collagen, reduced mRNA expression of types I (0.10 +/- 0.07 vs. 1.0 +/- 0.528, p = 0.002) and V (1.12 +/- 0.42 vs. 4.74 +/- 2.25, p = 0.009) collagen, in addition to decreased TGF-beta expression ( p < 0.0001). Conclusions: Collagen V-induced nasal tolerance in the experimental model of SSc regulated the pulmonary remodeling process, inhibiting collagen deposition and collagen I and V mRNA synthesis. Additionally, it decreased TGF-beta expression, suggesting a promising therapeutic option for scleroderma treatment.