31 resultados para Anatase TiO2
Resumo:
The minerals of the clay fraction in estuarine plains are mainly detrital being a mixture of marine and continental sediments, but can also be authigenic. Because of the importance of mangrove ecosystems in tropical estuarine areas and the relatively few existing studies of the mineralogical composition of soils in these environments, the aim of this study was to determine the mineralogical assemblage and identify potential contrasts along the coast of the State of Sao Paulo. Soils from I I mangroves distributed along the coastal plain of the State of Sao Paulo were sampled at depths of 0 to 20 and 60 to 80 cm, and samples of suspended sediments from the Ribeira do Iguape River were collected for analysis. Mineralogical analyses were performed on the clay and silt fractions by x-ray diffraction (XRD) and transmission electron microscopy, and fresh soil samples were analyzed by scanning electron microscopy-energy dispersive spectrometry and suspended sediments by XRD. The silt fraction contained quartz, feldspars, gibbsite, kaolinite, illite, and vermiculite, and the clay fraction contained smectite, kaolinite, illite, gibbsite, quartz, and feldspars. Locally, vermiculite, biotite, anatase, halloysite, and goethite may occur because of recent transport of sediments to the system. Pyrite was identified in fresh samples. The allochthonous minerals found either were terrestrial and transported by rivers or had originated from the continental platform by past transgressive events. We suggest that the neoformation of smectite and kaolinite occurs in mangrove soils. Different geomorphological settings along the Sao Paulo coast appear to regulate mineral distribution in mangrove soils.
Resumo:
One major challenge for the widespread application of direct methanol fuel cells (DMFCs) is to decrease the amount of platinum used in the electrodes, which has motivated a search for novel electrodes containing platinum nanoparticles. In this study, platinum nanoparticles were electrodeposited on layer-by-layer (LbL) films from TiO(2) and poly(vinyl sulfonic) (PVS), by immersing the films into a H(2)PtCl(6) solution and applying a 100 mu A current during different electrode position times. Scanning tunnel microscopy (STM) and atomic force microscopy (AFM) images showed increased platinum particle size and electrode roughness for increasing electrodeposition times. The potentiodynamic profile of the electrodes indicated that oxygen-like species in 0.5 mol L(-1) H(2)SO(4) were formed at less positive potentials for the smallest platinum particles. Electrochemical impedance spectroscopy measurements confirmed the high reactivity for the water dissociation and the large amount of oxygen-like species adsorbed on the smallest platinum nanoparticles. This high oxophilicity of the smallest nanoparticles was responsible for the electrocatalytic activity of Pt-TiO(2)/PVS systems for methanol electrooxidation, according to the Langmuir-Hinshelwood bifunctional mechanism. Significantly, the approach used here combining platinum electrodeposition and LbL matrices allows one to both control the particle size and optimize methanol electrooxidation, being therefore promising for producing membrane-electrode assemblies of DMFCs.
Resumo:
Structural, spectroscopic and dielectric properties of thulium-doped laser-heated pedestal Ta(2)O(5) as-grown fibres were studied. Undoped samples grow preferentially with a single crystalline monoclinic structure. The fibre with the lowest thulium content (0.1 at%) also shows predominantly a monoclinic phase and no intra-4f(12) Tm(3+) recombination was observed. For sample with the highest thulium amount (1.0 at%), the appearance of a dominant triclinic phase as well as intraionic optical activation was observed. The dependence of photoluminescence on excitation energy allows identification of different site locations of Tm(3+) ions in the lattice. The absence of recombination between the first and the ground-state multiplets as well as the temperature dependence of the observed transitions was justified by an efficient energy transfer between the Tm(3+) ions. Microwave dielectric properties were investigated using the small perturbation theory. At a frequency of 5 GHz, the undoped material exhibits a dielectric permittivity of 21 and for thulium-doped Ta(2)O(5) samples it decreases to 18 for the highest doping concentration. Nevertheless, the dielectric losses maintain a very low value. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
High energy band gap hosts doped with lanthanide ions are suitable for optical devices applications To study the potential of Ta(2)O(5) as a host compound pure and Eu(2)O(3)-doped Ta(2)O(5) crystal fibers were grown by the laser-heated pedestal growth technique in diameters ranging from 250 to 2600 pm and in lengths of up to 50 mm The axial temperature gradient at the solid/liquid interface of pure Ta(2)O(5) fibers revealed a critical diameter of 2200 gm above which the fiber cracks X-ray diffraction measurements of the pure Ta(2)O(5) single crystals showed a monoclinic symmetry and a growth direction of [1 (1) over bar 0] An analysis of the pulling rate as a function of the fiber diameter for Eu(2)O(3)-doped Ta(2)O(5) fibers indicated a well defined region in which constitutional supercooling is absent Photoluminescence measurements of pure Ta(2)O(5) crystals using excitation above the band gap (3 8 eV) were dominated by a broad unstructured green band that peaked at 500 nm Three Eu(3+)-related optical centers were identified in the doped samples with nominal concentrations exceeding 1 mol% Two of these centers were consistent with the ion in the monoclinic phase with different oxygen coordinations The third one was visible in the presence of the triclinic phase (C) 2010 Elsevier B V All rights reserved
Resumo:
Measurements of H-1 and C-13 Nuclear Magnetic Resonance (NMR) for the nano-composite materials formed by the intercalation of hexadecylamine (HDA) in metal oxides (TiO2, V2O5 and MoO3), are reported. The H-1 NMR spin-lattice relaxation in the rotating frame was described by using the spectral density due to Davidson and Cole, which incorporates a distribution of correlation times characterized by a width parameter epsilon. The fitting of the data was obtained for epsilon = 0.74, indicating that the correlation times are distributed over a narrow range in this system. High-resolution C-13 NMR techniques were used to resolve the NMR lines of middle-chain methylene groups in the spectra and variable contact time cross-polarization {H-1-}C-13 experiments were employed to analyze the reorientation dynamics of the CH3 and CH2 groups in the HDA chains.
Resumo:
Efficient compact TiO(2) films using different polyeleetrolytes are prepared by the layer-by-layer technique (LbL) and applied as an effective contact and blocking film in dye-sensitized solar cells (DSCs). The polyanion thermal stability plays a major role on the compact layers, which decreases back electron transfer processes and current losses at the FTO/TiO(2) interface. FESEM images show that polyelectrolytes such is sodium sullonated polystyrene (PSS) and sulfonated lignin (SE), in comparison to poly(acrylic acid) (FAA), ensure an adequate morphology for the LbL TiO(2) layer deposited before the mesoporous film, even triter the sintering step at 450 degrees C. The so treated photoanode in DSCs leads to a 30% improvement On the overall conversion efficiency. Electrochemical impedance spectroscopy (EIS) is employed to ascertain the role of die compact films with such polyelectrolytes. The significant increase in V(oc) of the solar cells with adequate polyelectrolytes in the LbL TiO(2) films shows their pivotal role in decreasing the electron recombination at the FTO surface and enhancing the electrical contact of FTO with the mesoporous TiO(2) layer.
Resumo:
Charge recombination at the conductor substrate/electrolyte interface has been prevented by using efficient blocking layers of TiO(2) compact films in dye-sensitized solar cell photoanodes. Compact blocking layers have been deposited before the mesoporous TiO(2) film by the layer-by-layer technique using titania nanoparticles as cations and sodium sulfonated polystyrene, PSS, as a polyanion. The TiO(2)/PSS blocking layer in a DSC prevents the physical contact of FTO and the electrolyte and leads to a 28% increase in the cell`s overall conversion efficiency, from 5.7% to 7.3%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The photocatalytic degradation of Janus Green B azo dye over silver modified titanium dioxide films was investigated by surface-enhanced Raman spectroscopy (SERS). An optimized SERS-active substrate was employed to study the photodegradation reaction of Janus Green B. Considering that photocatalytic degradation processes of organic molecules adsorbed on TiO2 might involve either their oxidation or reduction reaction, the vibrational spectroelectrochemical study of the dye was also performed, in order to clarify the transformations involved in initial steps of its photochemical decomposition. In order to understand the changes in Raman spectra of Janus Green B after photodegradation and/or electrochemical processes, a vibrational assignment of the main Raman active modes of the dye was carried out, based on a detailed resonance Raman profile. Products formed by electrochemical and photochemical degradation processes were compared. The obtained results revealed that the first steps of the degradation process of Janus Green B involve a reductive mechanism. (C) 2007 Published by Elsevier B.V.
Resumo:
Titanium dioxide was obtained by hydrolysis of the corresponding ethoxide, followed by washing, drying, and calcination at 80, 160, 240, 320, 400, and 700 C, respectively. The following surface properties of the solids obtained were determined as a function of the calcinations temperature: T(Calcn); area by the BET method; BrOnsted acidity by titration with sodium hydroxide; empirical polarity, ET(30); Lewis acidity, alpha(Surf); Lewis basicity, beta(Surf); and dipolarity/polarizability pi*(Sturf), by use of solvatochromic indicators. Except for le surf whose value increased slightly, heating the samples resulted in a decrease of all of the above-mentioned surface properties, due to the decrease of surface hydroxyl groups. This conclusion has been corroborated by FTIR. Values of E(T)(30), alpha(Surf), and pi*(Surf) are higher than those of water and alcohols; the BrOnsted and Lewis acidities of the samples correlate linearly. The advantages of using solvatochromic indicators to probe the surface properties and relevance of the results to the applications of TiO(2) are discussed.
Resumo:
Titanium dioxide with and without the addition of neodymium ions was prepared using sol-gel and precipitation methods. The resulting catalysts were characterized by thermal analysis, X-ray diffraction and BET specific surface area. Neodymium addition exerted a remarkable influence on the phase transition temperature and the surface properties of the TiO(2) matrix. TiO(2) samples synthesized by precipitation exhibit an exothermic event related from the amorphous to anatase phase transition at 510 degrees C, whereas in Nd-doped TiO(2) this transition occurred at 527 degrees C. A similar effect was observed in samples obtained using sol-gel method. The photocatalytic reactivity of the catalysts was evaluated by photodegradation of Remazol Black B (RB) under ultraviolet irradiation. Nd-doped TiO(2) showed enhanced photodegradation ability compared to undoped TiO(2) samples, independent of the method of synthesis. In samples obtained by sol-gel, RB decoloration was enhanced by 16% for TiO(2) doped with 0.5% neodymium ions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The photocatalytic performance of TiO(2)-SiMgO(x) ceramic plates for trichloroethylene abatement in gas phase has been evaluated under sun irradiance conditions. A continuous flow Pyrex glass reactor fixed on the focus of a compound parabolic collector has been used. The performance of the hybrid photocatalyst has been evaluated as the variation of TCE conversion and reaction products formation with the solar irradiance at different total gas flow, TCE concentration, and water vapour content. SiMgO(x) not only provides adsorbent properties to the photocatalyst, but it also allows the effective use of the material during low solar irradiance conditions. The adsorption-desorption phenomena play a pivotal role in the behaviour of the system. Thus, TCE conversion curves present two different branches when the sun irradiance increases (sunrise) or decreases (sunset). CO(2), COCl(2) and DCAC were the most relevant products detected. Meanwhile CO(2) concentration was insensitive to the branch analysed, COCl(2) or DCAC were not indicating the ability of these compounds to be adsorbed on the composite. An increase of the UV irradiation at total TCE conversion promotes the CO(2) selectivity. The excess of energy arriving to the reactor favours the direct reaction pathway to produce CO(2). The photonic efficiency, calculated as a function of the rate of CO(2) formation, decreases linearly with the solar irradiance up to around 2 mW cm(-2), where it becomes constant. For decontamination systems high TCE conversion is pursuit and then high solar irradiance values are required, in spite of lower photonic efficiency values. The present photocatalyst configuration, with only 17% of the reactor volume filled with the photoactive material, allows total TCE conversion for 150 ppm and 1 L min(-1) in a wide sun irradiance window from 2 to 4 mW cm(-2). The incorporation of water vapour leads to an increase of the CO(2) selectivity keeping the TCE conversion around 90%, although significant amounts of COCl(2) were observed. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Dye-sensitized solar cells, named by us Dye-Cells, are one of the most promising devices for solar energy conversion due to their reduced production cost and low environmental impact, especially those sensitized by natural dyes. The efficiency and stability of devices based on natural sensitizers such as mulberry (Morus alba Lam), blueberry (Vaccinium myrtillus Lam), and jaboticaba`s skin (Mirtus cauliflora Mart) were investigated. Dye-Cells prepared with aqueous mulberry extract presented the highest P(max) value (1.6 mW cm(-2)) with J(sc) = 6.14 mA cm(-2) and V(oc) = 0.49 V, Photoelectrochemical parameters of 16 cm(2) active area devices sensitized by mulberry dye were constant for 14 weeks of continuous evaluation. Moreover, the cell remained stable even after 36 weeks with a fairly good efficiency. Therefore, mulberry dye opens up a perspective of commercial feasibility for inexpensive and environmentally friendly Dye-Cells. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Hybrid photocatalysts based on an adsorbent SiMgOx and a photocatalyst TiO(2) were developed in a plate shape. The ceramic surface was coated with TiO(2) by the slip-casting technique. The effect of the support in the photocatalytic degradation of trichloroethylene (TCE) was analyzed by modifying TiO(2) loading and the layer thickness. Photocatalysts were characterised by N(2) adsorption-desorption, mercury intrusion porosimetry, SEM, UV-vis spectroscopy and XRD. A direct relationship between the TiO(2) content and the photocatalytic activity was observed up to three layers of TiO(2) (0.66 wt.%). Our results indicate that intermediate species generated on the TiO(2) layer can migrate through relatively long distances to react with the OH(-) surface groups of the support. By increasing the TiO(2) loading of the photocatalyst two effects were observed: trichloroethylene conversion is enhanced, while the efficiency of the oxidation process is decreased at expenses of increasing the selectivity to COCl(2) and dichloroacetylchloride (DCAC). The results are discussed in terms of the layer thickness, TiO(2) amount, TCE conversion and CO(2), and COCl(2) selectivity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
6 x 8cm(2) electrochromic devices (ECDs) with the configuration K-glass/EC-layer/electrotype/ion-storage (IS) layer/K-glass, have been assembled using Nb2O5:Mo EC layers, a (CeO2)(0.81)-TiO2 IS-layer and a new gelatin electrolyte containing Li+ ions. The structure of the electrolyte is X-ray amorphous. Its ionic conductivity passed by a maximum of 1.5 x 10(-5) S/CM for a lithium concentration of 0.3g/15ml. The value increases with temperature and follows an Arrhenius law with an activation energy of 49.5 kJ/mol. All solid-state devices show a reversible gray coloration, a long-term stability of more than 25,000 switching cycles (+/- 2.0 V/90 s), a transmission change at 550 nm between 60% (bleached state) and 40% (colored state) corresponding to a change of the optical density (Delta OD = 0. 15) with a coloration efficiency increasing from 10cm(2)/C (initial cycle) to 23cm(2)/C (25,000th cycle). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The degradation of phenol by a hybrid process (activated sludge + photocatalysis) in a high salinity medium (50 g L-1 of chloride) has been investigated. The sludge used from a municipal wastewater facility was adapted to the high salt concentrations prior to use. The photocatalytic conditions were optimized by means of a factorial experimental design. TiO2 P25 from Degussa was used as the photocatalyst. The initial phenol concentration was approximately 200 mg L-1 and complete removal of phenol and a mineralization degree above 98% were achieved within 25 h of treatment (24 h of biological treatment and I h of photocatalysis). From HPLC analyses, five hydroxylated intermediates formed during oxidation have been identified. The main ones were catechol and hydroquinone, followed by 1,2,4-benzenetriol, 2-hydroxy- 1,4-benzoquinone, and pyrogallol, in this order. No formation of organochlorine compounds was observed. Therefore, the proposed hybrid process showed itself to be suited to treat phenol in the presence of high contents of salt. (c) 2007 Elsevier B.V. All rights reserved.