75 resultados para Advanced control systems
Resumo:
In this paper we use the Hermite-Biehler theorem to establish results on the design of proportional plus integral plus derivative (PID) controllers for a class of time delay systems. Using the property of interlacing at high frequencies of the class of systems considered and linear programming we obtain the set of all stabilizing PID controllers. As far as we know, previous results on the synthesis of PID controllers rely on the solution of transcendental equations. This paper also extends previous results on the synthesis of proportional controllers for a class of delay systems Of retarded type to a larger class of delay systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the problem of state prediction for descriptor systems subject to bounded uncertainties. The problem is stated in terms of the optimization of an appropriate quadratic functional. This functional is well suited to derive not only the robust predictor for descriptor systems but also that for usual state-space systems. Numerical examples are included in order to demonstrate the performance of this new filter. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.
Resumo:
Conventional threading operations involve two distinct machining processes: drilling and threading. Therefore, it is time consuming for the tools must be changed and the workpiece has to be moved to another machine. This paper presents an analysis of the combined process (drilling followed by threading) using a single tool for both operations: the tap-milling tool. Before presenting the methodology used to evaluate this hybrid tool, the ODS (operating deflection shapes) basics is shortly described. ODS and finite element modeling (FEM) were used during this research to optimize the process aiming to achieve higher stable machining conditions and increasing the tool life. Both methods allowed the determination of the natural frequencies and displacements of the machining center and optimize the workpiece fixture system. The results showed that there is an excellent correlation between the dynamic stability of the machining center-tool holder and the tool life, avoiding a tool premature catastrophic failure. Nevertheless, evidence showed that the tool is very sensitive to work conditions. Undoubtedly, the use of ODS and FEM eliminate empiric decisions concerning the optimization of machining conditions and increase drastically the tool life. After the ODS and FEM studies, it was possible to optimize the process and work material fixture system and machine more than 30,000 threaded holes without reaching the tool life limit and catastrophic fail.
Resumo:
This paper develops H(infinity) control designs based on neural networks for fully actuated and underactuated cooperative manipulators. The neural networks proposed in this paper only adapt the uncertain dynamics of the robot manipulators. They work as a complement of the nominal model. The H(infinity) performance index includes the position errors as well the squeeze force errors between the manipulator end-effectors and the object, which represents a complete disturbance rejection scenario. For the underactuated case, the squeeze force control problem is more difficult to solve due to the loss of some degrees of manipulator actuation. Results obtained from an actual cooperative manipulator, which is able to work as a fully actuated and an underactuated manipulator, are presented. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we address the problem of scheduling jobs in a no-wait flowshop with the objective of minimising the total completion time. This problem is well-known for being nondeterministic polynomial-time hard, and therefore, most contributions to the topic focus on developing algorithms able to obtain good approximate solutions for the problem in a short CPU time. More specifically, there are various constructive heuristics available for the problem [such as the ones by Rajendran and Chaudhuri (Nav Res Logist 37: 695-705, 1990); Bertolissi (J Mater Process Technol 107: 459-465, 2000), Aldowaisan and Allahverdi (Omega 32: 345-352, 2004) and the Chins heuristic by Fink and Voa (Eur J Operat Res 151: 400-414, 2003)], as well as a successful local search procedure (Pilot-1-Chins). We propose a new constructive heuristic based on an analogy with the two-machine problem in order to select the candidate to be appended in the partial schedule. The myopic behaviour of the heuristic is tempered by exploring the neighbourhood of the so-obtained partial schedules. The computational results indicate that the proposed heuristic outperforms existing ones in terms of quality of the solution obtained and equals the performance of the time-consuming Pilot-1-Chins.
Resumo:
An accurate estimate of machining time is very important for predicting delivery time, manufacturing costs, and also to help production process planning. Most commercial CAM software systems estimate the machining time in milling operations simply by dividing the entire tool path length by the programmed feed rate. This time estimate differs drastically from the real process time because the feed rate is not always constant due to machine and computer numerical controlled (CNC) limitations. This study presents a practical mechanistic method for milling time estimation when machining free-form geometries. The method considers a variable called machine response time (MRT) which characterizes the real CNC machine`s capacity to move in high feed rates in free-form geometries. MRT is a global performance feature which can be obtained for any type of CNC machine configuration by carrying out a simple test. For validating the methodology, a workpiece was used to generate NC programs for five different types of CNC machines. A practical industrial case study was also carried out to validate the method. The results indicated that MRT, and consequently, the real machining time, depends on the CNC machine`s potential: furthermore, the greater MRT, the larger the difference between predicted milling time and real milling time. The proposed method achieved an error range from 0.3% to 12% of the real machining time, whereas the CAM estimation achieved from 211% to 1244% error. The MRT-based process is also suggested as an instrument for helping in machine tool benchmarking.
Resumo:
This paper considers the optimal linear estimates recursion problem for discrete-time linear systems in its more general formulation. The system is allowed to be in descriptor form, rectangular, time-variant, and with the dynamical and measurement noises correlated. We propose a new expression for the filter recursive equations which presents an interesting simple and symmetric structure. Convergence of the associated Riccati recursion and stability properties of the steady-state filter are provided. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This technical note develops information filter and array algorithms for a linear minimum mean square error estimator of discrete-time Markovian jump linear systems. A numerical example for a two-mode Markovian jump linear system, to show the advantage of using array algorithms to filter this class of systems, is provided.
Resumo:
Considering the increasing popularity of network-based control systems and the huge adoption of IP networks (such as the Internet), this paper studies the influence of network quality of service (QoS) parameters over quality of control parameters. An example of a control loop is implemented using two LonWorks networks (CEA-709.1) interconnected by an emulated IP network, in which important QoS parameters such as delay and delay jitter can be completely controlled. Mathematical definitions are provided according to the literature, and the results of the network-based control loop experiment are presented and discussed.
Resumo:
The paper presents the development of a mechanical actuator using a shape memory alloy with a cooling system based on the thermoelectric effect (Seebeck-Peltier effect). Such a method has the advantage of reduced weight and requires a simpler control strategy as compared to other forced cooling systems. A complete mathematical model of the actuator was derived, and an experimental prototype was implemented. Several experiments are used to validate the model and to identify all parameters. A robust and nonlinear controller, based on sliding-mode theory, was derived and implemented. Experiments were used to evaluate the actuator closed-loop performance, stability, and robustness properties. The results showed that the proposed cooling system and controller are able to improve the dynamic response of the actuator. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Petri net (PN) modeling is one of the most used formal methods in the automation applications field, together with programmable logic controllers (PLCs). Therefore, the creation of a modeling methodology for PNs compatible with the IEC61131 standard is a necessity of automation specialists. Different works dealing with this subject have been carried out; they are presented in the first part of this paper [Frey (2000a, 2000b); Peng and Zhou (IEEE Trans Syst Man Cybern, Part C Appl Rev 34(4):523-531, 2004); Uzam and Jones (Int J Adv Manuf Technol 14(10):716-728, 1998)], but they do not present a completely compatible methodology with this standard. At the same time, they do not maintain the simplicity required for such applications, nor the use of all-graphical and all-mathematical ordinary Petri net (OPN) tools to facilitate model verification and validation. The proposal presented here completes these requirements. Educational applications at the USP and UEA (Brazil) and the UO (Cuba), as well as industrial applications in Brazil and Cuba, have already been carried out with good results.
Resumo:
The main scope of this work is the implementation of an MPC that integrates the control and the economic optimization of the system. The two problems are solved simultaneously through the modification of the control cost function that includes an additional term related to the economic objective. The optimizing MPC is based on a quadratic program (QP) as the conventional MPC and can be solved with the available QP solvers. The method was implemented in an industrial distillation system, and the results show that the approach is efficient and can be used, in several practical cases. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Model predictive control (MPC) is usually implemented as a control strategy where the system outputs are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by means of the selection of different weights for the output error in the control cost function. A disadvantage of this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in which the set point is an additional variable of the control problem. In this case, the set point is restricted to remain inside the output zone and an appropriate output slack variable is included in the optimisation problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired optimal input target. Simulation of a process of the oil re. ning industry illustrates the performance of the proposed strategy.
Resumo:
Several MPC applications implement a control strategy in which some of the system outputs are controlled within specified ranges or zones, rather than at fixed set points [J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New Jersey, 2002]. This means that these outputs will be treated as controlled variables only when the predicted future values lie outside the boundary of their corresponding zones. The zone control is usually implemented by selecting an appropriate weighting matrix for the output error in the control cost function. When an output prediction is inside its zone, the corresponding weight is zeroed, so that the controller ignores this output. When the output prediction lies outside the zone, the error weight is made equal to a specified value and the distance between the output prediction and the boundary of the zone is minimized. The main problem of this approach, as long as stability of the closed loop is concerned, is that each time an output is switched from the status of non-controlled to the status of controlled, or vice versa, a different linear controller is activated. Thus, throughout the continuous operation of the process, the control system keeps switching from one controller to another. Even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. Here, a stable M PC is developed for the zone control of open-loop stable systems. Focusing on the practical application of the proposed controller, it is assumed that in the control structure of the process system there is an upper optimization layer that defines optimal targets to the system inputs. The performance of the proposed strategy is illustrated by simulation of a subsystem of an industrial FCC system. (C) 2008 Elsevier Ltd. All rights reserved.