56 resultados para AZO DYES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Betaine dyes are known to show very large transition energy shifts in different solvents. The ortho-betaine molecule - a simple two-ring prototype of the E-T(30) Reichardt dye - has been investigated theoretically from a combined statistical and quantum mechanics approach. Using sequential Monte Carlo (MC) simulations and MP2/cc-pVDZ calculations the in-water dipole moment of ortho-betaine is obtained as 12.30 +/- 0.05 D. This result shows a considerable increase of 75% compared to the in-vacuum dipole moment. For comparison, the use of a polarizable continuum model using the same MP2/cc-pVDZ leads to an in-water dipole moment of 11.6 D, in good agreement. This large polarization is incorporated in the classical potential for another MC simulation to generate solute-solvent configurations and to obtain the contribution of the polarization effect in the solvatochromic shift. Using statistically uncorrelated configurations and supermolecular INDO/CIS calculations, including the solute and, explicitly, 230 solvent water molecules, the statistically converged calculated shift is obtained here as 6360 cm(-1), in good agreement with the experimental result of 7550 cm(-1). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular architecture of azopolymers may be controlled via chemical synthesis and with selection of a suitable film-forming method, which is important for improving their properties for practical uses. Here we address the main challenge of combining the photoinduced birefringence features of azopolymers with the higher thermal and mechanical stabilities of poly(methyl methacrylate) (PMMA) using Atom Transfer Radical Polymerization (ATRP) to synthesize diblock- and triblock-copolymers of an azomonomer and the monomer methyl methacrylate. Langmuir-Blodgett (LB) films made with the copolymers mixed with cadmium stearate displayed essentially the same optically induced birefringence characteristics, in terms of maximum and residual birefringence and time for writing, as the mixed LB films with the homopolymer poly[4-(N-ethyl-N-(2-methacryloxyethyl))amino-2`-chloro-4`-nitroazobenzene] (HPDR13), also synthesized via ATRP. In fact, the controlled architecture of HPDR13 chains led to Langmuir films that could be more closely packed and reach higher collapse pressures than the corresponding films obtained with HPDR13-conv synthesized via conventional radicalar polymerization. This allowed LB films to be fabricated from neat HPDR13, which was not possible with HPDR13-conv. The enhanced organization in the LB films produced with controlled azopolymer chains, however, led to a smaller free volume available for isomerization of the azochromophores, thus yielding a lower photoinduced birefringence than in the HPDR13-conv films. The combination of ATRP synthesis and LB technology is then promising to obtain optical storage in films with improved thermal and mechanical processabilities, though a further degree of control must be sought to exploit film organization while maintaining the necessary free volume in the films. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Langmuir-Blodgett (LB) and layer-by-layer films (LbL) of a PPV (p-phenylenevinylene) derivative, an azo compound and tetrasulfonated phthalocyanines were successfully employed as transducers in an ""electronic tongue"" system for detecting trace levels of phenolic compounds in water. The choice of the materials was based on their distinct electrical natures, which enabled the array to establish a fingerprint of very similar liquids. Impedance spectroscopy measurements were taken in the frequency range from 10 Hz to 1 MHz, with the data analysed with principal component analysis (PCA). The sensing units were obtained from five-layer LB films of (poly[(2-methoxy-5-n-hexyloxy)-p-phenylenevinylene]), OC(1)OC(18)-PPV (poly(2-methoxy,5-(n-octadecyl)-p-phenylenevinylene)), DR (HEMA-co-DR13MA (poly-(hydroxyethylmethacrylate-co-[4`-[[2-(methacryloyloxy)-ethyl]ethylamino]-2-chloro-4-nitroazobenzene]))) and five-bilayer LbL films of tetrasulfonated metallic phthalocyanines deposited onto gold interdigitated electrodes. The sensors were immersed into phenol, 2-chloro-4-methoxyphenol, 2-chlorophenol and 3-chlorophenol (isomers) solutions at 1 x 10(-9) mol L(-1), with control experiments carried out in ultra pure water. Samples could be distinguished if the principal component analysis (PCA) plots were made with capacitance values taken at 10(3) Hz, which is promising for detection of trace amounts of phenolic pollutants in natural water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We carried out experiments of induced birefringence via two-photon absorption in spin-coated films of the conjugated polymer poly[2-[ethyl-[4-(4-nitro-phenylazo)-phenyl] -amino]-ethane (3-thienyl)ethanoate], PAzT, at 680 and 775 nm. This process allows recording in the bulk because of the spatial confinement of the bireffingence provided by the two-photon absorption. The induced birefringence is associated with molecular reorientation caused by the two-photon induced isomerization of the azochromophores attached to the polymer backbone. In addition, the two-photon absorption spectrum of PAzT was measured to help selecting the excitation wavelength for two-photon absorption induced birefringence. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-photon polymerization has emerged as a powerful tool to design complex three-dimensional microstructures for applications ranging from biology to nanophotonics. To broaden the application spectrum of such microstructures, different materials have been incorporated to the polymers, aiming at specific applications. In this paper we report the fabrication of microstructures containing rhodamine 610, which display strong fluorescence upon one- and two-photon excitation. The latter increases light-penetration depth and spatial selectivity of luminescence. We also demonstrate that by using silica submicrometric wires we were able to select individual microstructures to be excited, which could be explored for designing microstructure-based optical circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Excited state absorption and excited state dynamics of indocyanine-green (ICG) dissolved in dymethyl sulfoxide were measured using white-light continuum Z-scan (WLCZScan) and white-light continuum pump-probe (WLCPP) techniques. The excited state absorption spectrum, obtained through Z-scan measurements, revealed saturable absorption (SA) for wavelengths longer than 630 nm, while reverse saturable absorption (RSA) appeared, as indicated by a band at approximately 570 nm. Both processes were modeled by a three-energy-level diagram, from which the excited state cross-section values were determined. SA and RSA were also observed in pump-probe experiments, with a recovery time in the hundreds of picoseconds time scale due to the long lifetime of the first excited state of ICG. Such results contribute to the understanding of ICG optical properties, allowing application in photonics and medicine. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of an alternative route to convert poly(xylyliden tetrahydrothiophenium chloride) (PTHT) into poly(p-phenylene vinylene) (PPV) using dodecylbenzenesulfonate (DBS) has allowed the formation of ultrathin films with unprecedented control of architecture and emission properties. In this work, we show that this route may be performed with several sufonated compounds where RSO(3)(-) replaces the counter-ion (Cl(-)) of PTHT, some of which are even more efficient than DBS. Spin-coating films were produced from PTHT and azo-dye molecules, an azo-polymer and organic salts as counter-ions of PTHT. The effects of the thermal annealing step of PTHT/RSO(3)(-) films at 110 and 230 degrees C were monitored by measuring the absorption and emission spectra. The results indicate that the exchange of the counterion Cl(-) of PTHT by a linear long chain with RSO(3)(-) group is a general procedure to obtain PPV polymer at lower conversion temperature (ca. 110 degrees C) with significant increase in the emission efficiency, regardless of the chemical position and the number of sulfonate groups. With the enhanced emission caused by Congo Red and Tinopal as counter-ions, it is demonstrated that the new synthetic route is entirely generic, which may allow accurate control of conversion and emission properties. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five novel organotin complexes with the anthraquinone dyes alizarin (1,2-dihydroxyanthraquinone) and purpurin (1,2,4-trihydroxyanthraquinone) were synthesized and characterized by elemental analyses, FTIR and NMR spectroscopy ((1)H, (13)C and (119)Sn). The crystal and Molecular structures Of four complexes were determined by X-ray diffraction on single crystals: [Bu(2)Sn(aliz)(H(2)O)]center dot C(2)H(5)OH (A1 center dot EtO H), [Bu(2)Sn(aliz)(dmso)](2) (A3), [(Bu(2)Sn)(3)O(Hpurp)(2)] (P1) and [Bu(2)Sn(Hpurp)(dmso)](2) (P2), where H(2)aliz = alizarin and H(3)purp = purpurin. The coordination mode of the ligands is identical to that found in their Al/Ca complexes, where they act as dianionic tridentate ligands forming five and six-membered fused chelate rings. The coordination to the tin atoms occurs exclusively via the 1,2- phenolate oxygen and the adjacent quinoid oxygen atoms. The complexes A1, A3 and P1 are dimers with hepta-coordinated tin atoms in form of a slightly distorted pentagonal bipyramid. The trinuclear complex P2 contains two pentacoordinated and one heptacoordinated tin atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhodamine 6G (RH6G) laser dye-doped AlPO(4) xerogel and glass were prepared via a simple sol-gel route by one-step process and two-step process, respectively. The aggregating behavior of dyes in xerogel and glass was studied by excitation and emission spectra. The results indicated the dye aggregates become significantly weak in AlPO(4) glass than in xerogel, which might be attributed to the enhanced interactions between dye and AlPO(4) network as well as the nano-scale separation of dye by the mesoporous structure of AlPO(4) glass. The (27)Al MAS NMR of AlPO(4) glass confirms the interaction of RH6G with AlPO(4) glass network. Incorporation of RH6G into AlPO(4) glass converts Al(4) to Al(6) units, resulting in the increase of Al(6) concentration with the doped RH6G concentration. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescent AlPO(4) xerogels doped with different amounts of Rhodamine 6G (Rh6G) laser dye were prepared by a one-step sal-gel process. In addition, mesoporous AlPO(4) glasses obtained from undoped gels were loaded with different amounts of Rh6G by wet impregnation. Optical excitation and emission spectra of both series of samples show significant dependences on Rh6G concentration, revealing the influence of dye molecular aggregation. At comparable dye concentrations the aggregation effects are found to be significantly stronger in the gels than in the mesoporous glasses. This effect might be attributed to stronger interactions between the dye molecules and the glass matrix, resulting in more efficient dye dispersion in the latter. The interaction of Rh6G with the glassy AlPO(4) network has been probed by (27)Al and (31)P solid-state NMR techniques. New five- and six-coordinated aluminum environments have been observed and characterized by advanced solid-state NMR techniques probing (27)Al-(1)H and (27)Al-(31)P internuclear dipole couplings. The fractional area of these new Al sites is correlated with the combined fractional area of two new Q(3Al)((0)) and Q(2Al)((0)) phosphate species observed in the (31)P MAS NMR spectra. Based on this correlation as well as detailed composition dependent studies, we suggest that the new signals arise from the breakage of Al-O-P linkages associated with the insertion process. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potentially useful stead-state fluorimetric technique was used to determine the critical micellar concentrations (CMC(1) and CMC(2)) for two micellar media, one formed by SDS and the other by SDS/Brij 30. A comparative study based on conductimetric and surfacial tension measurements suggests that the CMC(1) estimated by the fluorimetric method is lower than the value estimated by these other techniques. Equivalent values were observed for SDS micelles without Brij 30 neutral co-surfactant. The use of acridine orange as fluorescent probe permitted to determine both CMC(1) and CMC(2). Based on it an explanation on aspects of micelle formation mechanism is presented, particularly based on a spherical and a rod like structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the covalent grafting of 3,4,9,10-perylenediimides (PDI), which are fluorescent dyes with very interesting optical properties, onto the walls of mesoporous molecular sieves MCM-41 and SBA-15. The mesoporous materials were first treated with 3-aminopropyltriethoxysilane (APTES) in anhydrous toluene, generating amine-containing surfaces. The amine-containing materials were then reacted with 3,4,9,10-perylenetetracarboxylic dianhydride (PTCA), generating surface-grafted PDI. Infrared spectra of the materials showed that the reaction with amino groups took place at both anhydride ends of the PTCA molecule, resulting in surface attached diimides. No sign of unreacted anhydride groups were found. The new materials, designated as MCMN2PDI and SBAN(2)PDI, presented absorption and emission spectra corresponding to weakly coupled PDI chromophores, in contrast to the strongly coupled rings usually found in solid PDI samples. The materials showed a red fluorescence, which could be observed by the naked eye under UV irradiation or with a fluorescence microscope. The PDI-modified mesoporous materials showed electrical conductivity when pressed into a pellet. The results presented here show that the new materials are potentially useful in the design of nanowires. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a study on whether and to what extent subcellular localization may compete favorably with photosensitization efficiency with respect to the overall efficiency of photoinduced cell death. We have compared the efficiency with which two cationic photosensitizers, namely methylene blue (MB) and crystal violet (CV), induce the photoinduced death of human cervical adenocarcinoma (HeLa) cells. Whereas MB is well known to generate singlet oxygen and related triplet excited species with high quantum yields in a variety of biological and chemical environments (i.e., acting as a typical type II photosensitizer), the highly mitochondria-specific CV produces triplet species and singlet oxygen with low yields, acting mostly via the classical type I mechanism (e.g., via free radicals). The findings described here indicate that the presumably more phototoxic type II photosensitizer (MB) does not lead to higher degrees of cell death compared to the type I (CV) photosensitizer. In fact, CV kills cells with the same efficiency as MB, generating at least 10 times fewer photoinduced reactive species. Therefore, subcellular localization is indeed more important than photochemical reactivity in terms of overall cell killing, with mitochondrial localization representing a highly desirable property for the development of more specific/efficient photosensitizers for photodynamic therapy applications. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protoporphyrin (Pp IX) derivatives were prepared to study the relationship between photosensitizer structure and photoactivity, with an emphasis on understanding the role of membrane interactions in the efficiency of photosensitizers used in photodynamic therapy (PDT). The synthetic strategies described here aimed at changing protoporphyrin periferic groups, varying overall charge and oil/water partition, while maintaining their photochemical properties. Three synthetic routes were used: (1) modification of Pp IX at positions 3(1) and 8(1) by addition of alkyl amine groups of different lengths (compounds 2-5), (2) change of Pp IX at positions 13(3) and 17(3), generating alkyl amines (compounds 6 and 7), a phosphate amine (compound 8), and quarternary ammonium compounds (compounds 9 and 10), and (3) amine-alkylation of Hematoporphyrin IX (Hp IX) at positions 3(1), 8(1), 13(3) and 17(3) (compound 12). Strategy 1 leads to hydrophobic compounds with low photocytotoxicity. Strategy 2 leads to compounds 6-10 that have high levels of binding/incorporation in vesicles, mitochondria and cells, which are indicative of high bioavailability. Addition of the phosphate group (compound 8), generates an anionic compound that has low liposome and cell incorporation, plus low photocytotoxicity. Compound 12 has intermediate incorporation and photocytotoxic properties. Compound modification is also associated with changes in their sub-cellular localization: 30% of 8 (anionic) is found in mitochondria as compared to 95% of compound 10 (cationic). Photocytotoxicity was shown to be highly correlated with membrane affinity, which depends on the asymmetrical and amphiphilic characters of sens, as well as with sub-cellular localization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Newly designed 2,1,3-benzothiadiazole-containing fluorescent probes with four excited state intramolecular proton transfer (ESIPT) sites were successfully tested in live cell-imaging assays using a confluent monolayer of human stem-cells (tissue). All tested dyes were compared with the commercially available DAPI and gave far better results. (c) 2010 Elsevier Ltd. All rights reserved.