163 resultados para AIRWAY MUCUS
Resumo:
Asthma is characterized by pulmonary cellular infiltration, vascular exudation and airway hyperresponsiveness. Several drugs that modify central nervous system (CNS) activity can modulate the course of asthma. Amphetamine (AMPH) is a highly abused drug that presents potent stimulating effects on the CNS and has been shown to induce behavioral, biochemical and immunological effects. The purpose of this study was to investigate the effects of AMPH on pulmonary cellular influx, vascular permeability and airway reactivity. AMPH effects on adhesion molecule expression, IL-10 and IL-4 release and mast cell degranulation were also studied. Male Wistar rats were sensitized with ovalbumin (OVA) plus alum via subcutaneous injection. One week later, the rats received another injection of OVA-alum (booster). Two weeks after this booster, the rats were subjected to AMPH treatment 12 h prior to the OVA airway challenge. In rats treated with AMPH, the OVA challenge reduced cell recruitment into the lung, the vascular permeability and the cellular expression of ICAM-1 and Mac-1. Additionally, elevated levels of IL-10 and IL-4 were found in samples of lung explants from allergic rats. AMPH treatment, in comparison, increased IL-10 levels but reduced those of IL-4 in the lung explants. Moreover, the tracheal responsiveness to methacholine (MCh), as well as to an in vitro OVA challenge, was reduced by AMPH treatment, and levels of PCA titers were not modified by the drug. Our findings suggest that single AMPH treatment down-regulates several parameters of lung inflammation, such as cellular migration, vascular permeability and tracheal responsiveness. These results also indicate that AMPH actions on allergic lung inflammation include endothelium-leukocyte interaction mechanisms, cytokine release and mast cell degranulation. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Obesity and obstructive sleep apnea (OSA) are both associated with the prevalence of major cardiovascular illnesses and certain common factors they are considered responsible for, such as stress oxidative increase, sympathetic tonus and resistance to insulin. Objective: The aim of the present study was to compare the effect of continuous positive airway pressure (CPAP) on oxidative stress and adiponectin levels in obese patients with and without OSA. Methods: Twenty-nine obese patients were categorized into 3 groups: group 1: 10 individuals without OSA (apnea-hypopnea index, AHI <= 5) who did not have OSA diagnosed at polysomnography; group 2: 10 patients with moderate to severe OSA (AHI >= 20) who did not use CPAP; group 3: 9 patients with moderate to severe OSA (AHI >= 20) who used CPAP. Results: Group 3 showed significant differences before and after the use of CPAP, in the variables of diminished production of superoxide, and increased nitrite and nitrate synthesis and adiponectin levels. Positive correlations were seen between the AHI and the superoxide production, between the nitrite and nitrate levels and the adiponectin levels, between superoxide production and the HOMA-IR, and between AHI and the HOMA-IR. Negative correlations were found between AHI and the nitrite and nitrate levels, between the superoxide production and that of nitric oxide, between the superoxide production and the adiponectin levels, between AHI and the adiponectin levels, and between the nitrite and nitrate levels and the HOMA-IR. Conclusions: This study demonstrates that the use of CPAP can reverse the increased superoxide production, the diminished serum nitrite, nitrate and plasma adiponectin levels, and the metabolic changes existing in obese patients with OSA. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Inhaled endotoxin (lipopolysaccharide, LPS) initiates an inflammatory response and leads to the expression of CR3 (CD11b/CD18) receptors on polymorphonuclear leukocytes (PMNs). We determined if PMN activation in nasal lavage fluid (NLF) is a possible biomarker of occupational endotoxin exposure. Seven subjects exposed to endotoxin provided NLF samples that were split into three aliquots (negative control - 1 M nicotinamide; sham; positive control - 11 eta g of exogenous LPS) and PMN activation was measured using a chemiluminometer. Differences in mean PMN activation were apparent, negative control: 548 +/- 15.65 RLU 100 mu l(-1); sham: 11469 +/- 2582 RLU 100 mu l(-1); positive control: 42026 +/- 16659 RLU 100 mu l (n = 7; p < 0.05). This technique shows promise as a diagnostic method for measuring upper airway LPS exposure.
Resumo:
Introduction: Airway dysfunction in patients with the Acute Respiratory Distress Syndrome (ARDS) is evidenced by expiratory flow limitation and dynamic hyperinflation. These functional alterations have been attributed to closure/obstruction of small airways. Airway morphological changes have been reported in experimental models of acute lung injury, characterized by epithelial necrosis and denudation in distal airways. To date, however, no study has focused on the morphological airway changes in lungs from human subjects with ARDS. The aim of this study is to evaluate structural and inflammatory changes in distal airways in ARDS patients. Methods: We retrospectively studied autopsy lung tissue from subjects who died with ARDS and from control subjects who died of non pulmonary causes. Using image analysis, we quantified the extension of epithelial changes (normal, abnormal and denudated epithelium expressed as percentages of the total epithelium length), bronchiolar inflammation, airway wall thickness, and extracellular matrix (ECM) protein content in distal airways. The Student`s t test or the Mann-Whitney test was used to compare data between the ARDS and control groups. Bonferroni adjustments were used for multiple tests. The association between morphological and clinical data was analyzed by Pearson rank test. Results: Thirty-one ARDS patients (A: PaO(2)/FiO(2) <= 200, 45 +/- 14 years, 16 males) and 11 controls (C:52 +/- 16 years, 7 males) were included in the study. ARDS airways showed a shorter extension of normal epithelium (A:32.9 +/- 27.2%, C:76.7 +/- 32.7%, P < 0.001), a larger extension of epithelium denudation (A:52.6 +/- 35.2%, C:21.8 +/- 32.1%, P < 0.01), increased airway inflammation (A:1(3), C:0(1), P = 0.03), higher airway wall thickness (A:138.7 +/- 54.3 mu m, C:86.4 +/- 33.3 mu m, P < 0.01), and higher airway content of collagen I, fibronectin, versican and matrix metalloproteinase-9 (MMP-9) compared to controls (P = 0.03). The extension of normal epithelium showed a positive correlation with PaO(2)/FiO(2) (r(2) = 0.34; P = 0.02) and a negative correlation with plateau pressure (r(2) = 0.27; P = 0.04). The extension of denuded epithelium showed a negative correlation with PaO(2)/FiO(2) (r(2) = 0.27; P = 0.04). Conclusions: Structural changes in small airways of patients with ARDS were characterized by epithelial denudation, inflammation and airway wall thickening with ECM remodeling. These changes are likely to contribute to functional airway changes in patients with ARDS.
Resumo:
Objective: The aim of this paper is to study the respiratory muscle strength by evaluating the maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP) and lung volume before and 3 and 6 months after adenotonsillectomy. This is an interventional, before and after trial. It was set at the Department of Otolaryngology. University of Sao Paulo, School of Medicine. We included 29 children (6-13 years old), both genders, consecutively recruited from the waiting list for adenotonsillectomy. Children were submitted to maximal inspiratory pressures (MIP), maximal expiratory pressure (MEP) evaluation using an analog manovacuometer, lung volume, using incentive expirotometer and thoracic and abdominal perimeter using a centimeter tape. Children were evaluated in 3 different moments: 1 week before and 3 and 6 months after surgery. Results: MIP improved significantly 3 months (p < 0.001) after adenotonsillectomy and MEP did not change (p = 1). There were increases in lung volume (p = 000), chest (p = 0.017) and abdominal perimeter (p = 0.05). Six months after surgery, all parameters improved. MIP (p = 0), MEP (p = 0), lung volume (p = 0.02), chest (p = 0.034) and abdominal perimeter (p = 0.23). Conclusion: This study suggests that there was an improvement in respiratory muscular strength, once there was a significant improvement in maximal inspiratory pressure, lung volume and other parameters after adenotonsillectomy. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background and objective: Hyperinflation with a decrease in inspiratory capacity (IC) is a common presentation for both unstable and stable COPD patients. As CPAP can reduce inspiratory load, possibly secondary to a reduction in hyperinflation, this study examined whether CPAP would increase IC in stable COPD patients. Methods: Twenty-one stable COPD patients (nine emphysema, 12 chronic bronchitis) received a trial of CPAP for 5 min at 4, 7 and 11 cmH(2)O. Fast and slow VC (SVC) were measured before and after each CPAP trial. In patients in whom all three CPAP levels resulted in a decreased IC, an additional trial of CPAP at 2 cmH(2)O was conducted. For each patient, a `best CPAP` level was defined as the one associated with the greatest IC. This pressure was then applied for an additional 10 min followed by spirometry. Results: Following application of the `best CPAP`, the IC and SVC increased in 15 patients (nine emphysema, six chronic bronchitis). The mean change in IC was 159 mL (95% CI: 80-237 mL) and the mean change in SVC was 240 mL (95% CI: 97-386 mL). Among these patients, those with emphysema demonstrated a mean increase in IC of 216 mL (95% CI: 94-337 mL). Six patients (all with chronic bronchitis) did not demonstrate any improvement in IC. Conclusions: The best individualized CPAP can increase inspiratory capacity in patients with stable COPD, especially in those with emphysema.
Resumo:
Furosemide, a potent diuretic, affects ion and water movement across the respiratory epithelium. However, the effects of furosemide, as clinically used, on mucociliary clearance, a critical respiratory defense mechanism, are still lacking in humans. Fourteen young healthy subjects were assigned to three random interventions, spaced one-week apart: no intervention (control), oral furosemide (40 mg), and furosemide + oral volume replacement (F + R). Nasal mucociliary clearance was assessed by saccharine test (STT), and mucus properties were in vitro evaluated by means of contact angle and transportability by sneeze. Urine output and osmolality were also evaluated. Urine output increased and reduced urine osmolality in furosemide and F + R compared to the control condition. STT remained stable in the control group. In contrast, STT increased significantly (40%) after furosemide and F + R. There were no changes in vitro mucus properties in all groups. In conclusion, furosemide prolongs STT in healthy young subjects. This effect is not prevented by fluid replacement, suggesting a direct effect of furosemide on the respiratory epithelium. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present study aimed to evaluate the role of nitric oxide (NO) on hyperpnea-induced bronchoconstriction (HIB) and airway microvascular hyperpermeability (AMP). Sixty-four guinea pigs were anesthetized, tracheotonnized, cannulated, and connected to animal ventilator to obtain pulmonary baseline respiratory system resistance (Rrs). Animals were then submitted to 5 minutes hyperpnea and Rrs was evaluated during 15 minutes after hyperpnea. AMP was evaluated by Evans blue dye (25 mg/kg) extravasation in airway tissues. Constitutive and inductible NO was evaluated by pretreating animals with N(G)-nitro-1-arginine methyl ester (I-NAME) (50 mg/kg), aminoguadinine (AG) (50 mg/kg), and I-arginine (100 mg/kg) and exhaled NO (NOex) was evaluated before and after drug administration and hyperpnea. The results show that I-NAME potentiated (57%) HIB and this effect was totally reversed by I-arginine pretreatment, whereas AG did not have effect on HIB. I-NAME decreased basal AMP (48%), but neither I-NAME nor AG had any effect on hyperpnea-induced AMP. NOex levels were decreased by 50% with I-NAME, effect that was reversed by I-arginine treatment. These results suggest that constitutive but not inducible NO could have a bronchoprotective effect on HIB in guinea pigs. The authors also observed that neither constitutive nor inducible NO seems to have any effect on hyperpnea-induced AMP.
Resumo:
MENDES, F. A. R., F. M. ALMEIDA, A. CUKIER, R. STELMACH, W. JACOB-FILHO, M. A. MARTINS, and C. R. F. CARVALHO. Effects of Aerobic Training on Airway Inflammation in Asthmatic Patients. Med. Sci. Sports Exerc., Vol. 43, No. 2, pp. 197-203, 2011. Purpose: There is evidence suggesting that physical activity has anti-inflammatory effects in many chronic diseases; however, the role of exercise in airway inflammation in asthma is poorly understood. We aimed to evaluate the effects of an aerobic training program on eosinophil inflammation (primary aim) and nitric oxide (secondary aim) in patients with moderate or severe persistent asthma. Methods: Sixty-eight patients randomly assigned to either control (CG) or aerobic training (TG) groups were studied during the period between medical consultations. Patients in the CG (educational program + breathing exercises; N = 34) and TG (educational program + breathing exercises + aerobic training; N = 34) were examined twice a week during a 3-month period. Before and after the intervention, patients underwent induced sputum, fractional exhaled nitric oxide (FeNO), pulmonary function, and cardiopulmonary exercise testing. Asthma symptom-free days were quantified monthly, and asthma exacerbation was monitored during 3 months of intervention. Results: At 3 months, decreases in the total and eosinophil cell counts in induced sputum (P = 0.004) and in the levels of FeNO (P = 0.009) were observed after intervention only in the TG. The number of asthma symptom-free days and (V) over dotO(2max) also significantly improved (P < 0.001), and lower asthma exacerbation occurred in the TG (P < 0.01). In addition, the TG presented a strong positive relationship between baseline FeNO and eosinophil counts as well as their improvement after training (r = 0.77 and r = 0.9, respectively). Conclusions: Aerobic training reduces sputum eosinophil and FeNO in patients with moderate or severe asthma, and these benefits were more significant in subjects with higher levels of inflammation. These results suggest that aerobic training might be useful as an adjuvant therapy in asthmatic patients under optimized medical treatment.
Resumo:
Background: Upper airway stenosis (UAS) after endotracheal intubation is a common problem in children. Most literature refers to a surgical treatment for these lesions. Laryngotracheal reconstruction and cricotracheal resection are used for low- and high-grade stenosis, but decannulation is not always possible immediately after surgery. Purpose: The aim of this study was to verify the feasibility and results of endoscopic dilatations for treatment of subglottic stenosis. Method: The study encompassed a 12-year retrospective analysis of patients treated for UAS in a tertiary center. All children were symptomatic at the time of the endoscopic diagnosis. The stenosis was graded according to the Myer-Cotton criteria. Endoscopic dilatation was initiated immediately after the diagnosis. Children with grade IV stenosis underwent surgery. Results: Children with tracheal stenosis and no involvement of the subglottic area did not respond to endoscopic dilatations and underwent surgery. There were 45 children with grade I stenosis, 12 with grade II, 7 with grade III, and 4 with grade IV lesions. Patients with grade I, II, and III stenosis were a] I treated by endoscopic dilatations alone and were decannulated when asymptomatic. The average time for decannulation was 18.90 +/- 26.07 months for grade 1, 32.5 +/- 27.08 months for grade 11, and 27.57 +/- 20.60 months for grade III stenosis (P < .01, for grade II vs grade III). Conclusion: Grade I, II, and III subglottic stenoses can be safely managed by early endoscopic dilatations with a high rate of success and low rate of morbidity but require a significantly long period of treatment. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
There is an intimate relationship between the extracellular matrix (ECM) and smooth muscle cells within the airways. Few studies have comprehensively assessed the composition of different ECM components and its regulators within the airway smooth muscle (ASM) in asthma. With the aid of image analysis, the fractional areas of total collagen and elastic fibres were quantified within the ASM of 35 subjects with fatal asthma (FA) and compared with 10 nonfatal asthma (NFA) patients and 22 nonasthmatic control cases. Expression of collagen I and III, fibronectin, versican, matrix metalloproteinase (MMP)-1, -2, -9 and -12 and tissue inhibitor of metalloproteinase-1 and -2 was quantified within the ASM in 22 FA and 10 control cases. In the large airways of FA cases, the fractional area of elastic fibres within the ASM was increased compared with NFA and controls. Similarly, fibronectin, MMP-9 and MMP-12 were increased within the ASM in large airways of FA cases compared with controls. Elastic fibres were increased in small airways in FA only in comparison with NFA cases. There is altered extracellular matrix composition and a degradative environment within the airway smooth muscle in fatal asthma patients, which may have important consequences for the mechanical and synthetic functions of airway smooth muscle.
Resumo:
Background: Smooth muscle content is increased within the airway wall in patients with asthma and is likely to play a role in airway hyperresponsiveness. However, smooth muscle cells express several contractile and structural proteins, and each of these proteins may influence airway function distinctly. Objective: We examined the expression of contractile and structural proteins of smooth muscle cells, as well as extracellular matrix proteins, in bronchial biopsies of patients with asthma, and related these to lung function, airway hyperresponsiveness, and responses to deep inspiration. Methods: Thirteen patients with asthma (mild persistent, atopic, nonsmoking) participated in this cross-sectional study. FEV1 % predicted, PC20 methacholine, and resistance of the respiratory system by the forced oscillation technique during tidal breathing and deep breath were measured. Within 1 week, a bronchoscopy was performed to obtain 6 bronchial biopsies that were immunuhistochemically stained for alpha-SM-actin, desmin, myosin light chain kinase (MLCK), myosin, calponin, vimentin, elastin, type III collagen, and fibronectin. The level of expression was determined by automated densitometry. Results: PC20 methacholine was inversely related to the expression of alpha-smooth muscle actin (r = -0.62), desmin (r = -0.56), and elastin (r = -0.78). In addition, FEV1% predicted was positively related and deep inspiration-induced bronchodilation inversely related to desmin (r = -0.60), MLCK (r = -0.60), and calponin (r = -0.54) expression. Conclusion: Airway hyperresponsiveness, FEV1% predicted, and airway responses to deep inspiration are associated with selective expression of airway smooth muscle proteins and components of the extracellular matrix.
Resumo:
We developed a model of severe allergic inflammation and investigated the impact of airway and lung parenchyma remodelling on in vivo and in vitro respiratory mechanics. BALB/c mice were sensitized and challenged with ovalbumin in severe allergic inflammation (SA) group. The control group (C) received saline using the same protocol. Light and electron microscopy showed eosinophil and neutrophil infiltration and fibrosis in airway and lung parenchyma, mucus gland hyperplasia, and airway smooth muscle hypertrophy and hyperplasia in SA group. These morphological changes led to in vivo (resistive and viscoelastic pressures, and static elastance) and in vitro (tissue elastance and resistance) lung mechanical alterations. Airway responsiveness to methacholine was markedly enhanced in SA as compared with C group. Additionally, IL-4, IL-5, and IL-13 levels in the bronchoalveolar lavage fluid were higher in SA group. In conclusion, this model of severe allergic lung inflammation enabled us to directly assess the role of airway and lung parenchyma inflammation and remodelling on respiratory mechanics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Airway epithelium plays an important role in the asthma physiopathology. Aerobic exercise decreases Th2 response in murine models of allergic asthma, but its effects on the structure and activation of airway epithelium in asthma are unknown. BALB/c mice were divided into control, aerobic exercise, ovalbumin-sensitized and ovalbumin-sensitized plus aerobic exercise groups. Ovalbumin sensitization occurred on days 0, 14, 28, 42, and aerosol challenge from day 21 to day 50. Aerobic exercise started on day 22 and ended on day 50. Total cells and eosinophils were reduced in ovalbumin-sensitized group submitted to aerobic exercise. Aerobic exercise also reduced the oxidative and nitrosative stress and the epithelial expression of Th2 cytokines, chemokines, adhesion molecules, growth factors and NF-kB and P2X7 receptor. Additionally, aerobic exercise increased the epithelial expression of IL-10 in non-sensitized and sensitized animals. These findings contribute to the understanding of the beneficial effects of aerobic exercise for chronic allergic airway inflammation, suggesting an immune-regulatory role of exercise on airway epithelium. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 x 10(6)) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-beta, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes. (C) 2010 Elsevier B.V. All rights reserved.