172 resultados para 5-aminosalicylic acid
Resumo:
It was intended to examine the in vitro penetration of cisplatin (CIS) through porcine skin in the presence of different concentrations of monoolein (MO) as well as to verify the main barrier for CIS skin penetration. In vitro skin penetration of CIS was studied from propylene glycol (PG) solutions containing 0%, 5%, 10%, and 20% of MO using Franz-type diffusion cell and porcine ear skin. Pretreatment experiments with MO and experiments with skin without stratum corneum (SC) were also carried out. Skin penetration studies of CIS showed that the presence of MO doubled the drug permeation through the intact skin. However, permeation studies through the skin without SC caused only a small enhancement of CIS permeation compared to intact skin. Moreover, pretreatment of skin with MO formulations did not show any significant increase in the flux of the drug. In conclusion, MO did not act as a real penetration enhancer for CIS, but it increased the drug partition to the receptor solution improving CIS transdermal permeation. The absence of improvement in drug permeation by MO pretreatment and by the removal of SC indicates that the SC is not the main barrier for the permeation of the metal coordination compound. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study, oral carcinoma cells were used to evaluate chloroaluminum-phthalocyanine encapsulated in liposomes as the photosensitizer agent in support of photodynamic therapy (PDT). The genotoxicity and cytotoxicity behavior of the encapsulated photosensitizer in both dark and under irradiation using the 670-nm laser were investigated with the classical trypan blue cell viability test, the acridine orange/ethidium bromide staining organelles test, micronucleus formation frequency, DNA fragmentation, and cell morphology. The cell morphology investigation was carried out using light and electronic microscopes. Our findings after PDT include reduction in cell viability (95%) associated with morphologic alterations. The neoplastic cell destruction was predominantly started by a necrotic process, according to the assay with acridine orange and ethidium bromide, and this was confirmed by electronic microscopy analysis. Neither the PDT agent nor laser irradiation alone showed cytotoxicity, genotoxicity, or even morphologic alterations. Our results reinforce the efficiency of tight-irradiated chloroaluminum-phthalocyanine in inducing a positive effect of PDT. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Serotonin (5-HT) plays a key role in the neural circuitry mediating unconditioned and conditioned fear responses related to panic and generalized anxiety disorders. The basolateral nucleus of the amygdala (BLA) and the dorsal periaqueductal gray (dPAG) appear to be mainly involved in these conditions. The aim of this study was to measure the extracellular level of 5-HT and its metabolite 5-hydroxyindolacetic acid (5-HIAA) in the BLA and dPAG during unconditioned and conditioned fear states using in vivo microdialysis procedure. Thus, for the unconditioned fear test, animals were chemically stimulated in the dPAG with semicarbazide, an inhibitor of the gamma-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase. For the conditioned fear test, animals were subjected to a contextual conditioned fear paradigm using electrical footshock as the unconditioned stimulus. The results show that the 5-HT and 5-HIAA level in the BLA and dPAG did not change during unconditioned fear, whereas 5-HT concentration, but not 5-HIAA concentration, increased in these brain areas during conditioned fear. The present study showed that the 5-HT system was activated during conditioned fear, whereas it remained unchanged during unconditioned fear, supporting the hypothesis that 5-HT has distinct roles in conditioned and unconditioned fear (dual role of 5-HT in anxiety disorders). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Tyrosine hydroxylase deficiency is an autosomal recessive disorder resulting from cerebral catecholamine deficiency. Tyrosine hydroxylase deficiency has been reported in fewer than 40 patients worldwide. To recapitulate all available evidence on clinical phenotypes and rational diagnostic and therapeutic approaches for this devastating, but treatable, neurometabolic disorder, we studied 36 patients with tyrosine hydroxylase deficiency and reviewed the literature. Based on the presenting neurological features, tyrosine hydroxylase deficiency can be divided in two phenotypes: an infantile onset, progressive, hypokinetic-rigid syndrome with dystonia (type A), and a complex encephalopathy with neonatal onset (type B). Decreased cerebrospinal fluid concentrations of homovanillic acid and 3-methoxy-4-hydroxyphenylethylene glycol, with normal 5-hydroxyindoleacetic acid cerebrospinal fluid concentrations, are the biochemical hallmark of tyrosine hydroxylase deficiency. The homovanillic acid concentrations and homovanillic acid/5-hydroxyindoleacetic acid ratio in cerebrospinal fluid correlate with the severity of the phenotype. Tyrosine hydroxylase deficiency is almost exclusively caused by missense mutations in the TH gene and its promoter region, suggesting that mutations with more deleterious effects on the protein are incompatible with life. Genotype-phenotype correlations do not exist for the common c.698G > A and c.707T > C mutations. Carriership of at least one promotor mutation, however, apparently predicts type A tyrosine hydroxylase deficiency. Most patients with tyrosine hydroxylase deficiency can be successfully treated with l-dopa.
Resumo:
Photodynamic therapy requires a photosensitizer, oxygen, and activating light. For acne, pilosebaceous units are ""target"" structures. Porphyrins are synthesized in vivo from 5-aminolevulinic acid (ALA), particularly in pilosebaceous units. Different photosensitizers and drug delivery methods have been reported for acne treatment. There are a variety of porphyrin precursors with different pharmacokinetic properties. Among them, ALA and methyl-ester of ALA (MAT.) are available for possible off-label treatment of acne vulgaris. In addition, various light sources, light dosimetry, drug incubation time, and pre- and posttreatment care also change efficacy and side effects. None of these variables has been optimized for acne treatment, but a number of clinical trials provide helpful guidance. In this paper, we critically analyze clinical trials, case reports, and series of cases published through 2009. (J Am Acad Dermatol 2010;63:195-211.)
Resumo:
The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4] Oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.
Resumo:
Recent evidence has shown that the serotonergic mechanism of the lateral parabrachial nucleus (LPBN) participates in the regulation of renal and hormonal responses to isotonic blood volume expansion (BVE). We investigated the BVE-induced Fos activation along forebrain and hindbrain nuclei and particularly within the serotonergic clusters of the raphe system that directly project to the LPBN. We also examined whether there are changes in the concentration of serotonin (5HT) within the raphe nucleus in response to the same stimulus. With this purpose, we analyzed the cells doubly labeled for Fos and Fluorogold (FG) following BVE (NaCl 0.15 M, 2 ml/100 g b.w., 1 min) 7 days after FG injection into the LPBN. Compared with the control group, blood volume-expanded rats showed a significant greater number of Fos-FG double-labeled cells along the nucleus of the solitary tract, locus coeruleus, hypothalamic paraventricular nucleus, central extended amygdala complex, and dorsal raphe nucleus (DRN) cells. Our study also showed an increase in the number of serotonergic DRN neurons activated in response to isotonic BVE. We also observed decreased levels of 5HT and its metabolite 5-hydroxyindoleacetic acid (measured by high-pressure liquid chromatography) within the raphe nucleus 15 min after BVE. Given our previous evidence on the role of the serotonergic system in the LPBN after BVE, the present morphofunctional findings suggest the existence of a key pathway (DRN-LPBN) that may control BVE response through the modulation of 5HT release. (c) 2008 Wiley-Liss, Inc.
Resumo:
In vitro, nitric oxide (NO) inhibits the firing rate of magnocellular neurosecretory cells (MNCs) of hypothalamic supraoptic and paraventricular nuclei and this effect has been attributed to GABAergic activation. However, little is known about the direct effects of NO in MNCs. We used the patch-clamp technique to verify the effect Of L-arginine, a precursor for NO synthesis, and N-omega-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NOS, on spontaneous electrical activity of MNCs after glutamatergic and GABAergic blockade in Wistar rat brain slices. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 mu M) and DL-2-amino-5-phosphonovaleric acid (DL-AP5) (30 mu M) were used to block postsynaptic glutamatergic currents, and picrotoxin (30 mu M) and saclofen (30 mu M) to block ionotropic and metabotropic postsynaptic GABAergic currents. Under these conditions, 500 mu M L-arginine decreased the firing rate from 3.7 +/- 0.6 Hz to 1.3 +/- 0.3 Hz. Conversely, 100 mu M L-NAME increased the firing rate from 3.0 +/- 0.3 Hz to 5.8 +/- 0.4 Hz. All points histogram analysis showed changes in resting potential from -58.1 +/- 0.8 mV to -62.2 +/- 1.1 mV in the presence of L-arginine and from -59.8 +/- 0.7 mV to -56.9 +/- 0.8 mV by L-NAME. Despite the nitrergic modulator effect on firing rate, some MNCs had no significant changes in their resting potential. In those neurons, hyperpolarizing after-potential (HAP) amplitude increased from 12.4 +/- 1.2 mV to 16.8 +/- 0.7 mV by L-arginine, but without significant changes by L-NAME treatment. To our knowledge, this is the first demonstration that NO can inhibit MNCs independent of GABAergic inputs. Further, our results point to HAP as a potential site for nitrergic modulation. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The prefrontal cortex is continuously required for working memory processing during wakefulness, but is particularly hypoactivated during sleep and in psychiatric disorders such as schizophrenia. Ammon`s horn CA1 hippocampus subfield (CA1) afferents provide a functional modulatory path that is subjected to synaptic plasticity and a prominent monoaminergic influence. However, little is known about the muscarinic cholinergic effects on prefrontal synapses. Here, we investigated the effects of the muscarinic agonist, pilocarpine (PILO), on the induction and maintenance of CA1-medial prefrontal cortex (mPFC) long-term potentiation (LTP) as well as on brain monoamine levels. Field evoked responses were recorded in urethane-anesthetized rats during baseline (50 min) and after LTP (130 min), and compared with controls. LTP was induced 20 min after PILO administration (15 mg/kg, i.p.) or vehicle (NaCl 0.15 M, i.p.). In a separate group of animals, the hippocampus and mPFC were microdissected 20 min after PILO injection and used to quantify monoamine levels. Our results show that PILO potentiates the late-phase of mPFC UP without affecting either post-tetanic potentiation or early LTP (20 min). This effect was correlated with a significant decrease in relative delta (1-4 Hz) power and an increase in sigma (10-15 Hz) and gamma (2540 Hz) powers in CA1. Monoamine levels were specifically altered in the mPFC. We observed a decrease in dopamine, 5-HT, 5-hydroxyindolacetic acid and noradrenaline levels, with no changes in 3,4-hydroxyphenylacetic acid levels. Our data, therefore, suggest that muscarinic activation exerts a boosting effect on mPFC synaptic plasticity and possibly on mPFC-dependent memories, associated to monoaminergic changes. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aim. The aim of this study was to evaluate the concentration of calcium ions and smear layer removal by using root canal chelators according to flame atomic absorption spectrophotometry and scanning electron microscopy. Forty-two human maxillary central incisors were irrigated with 15% ethylenediaminetetraacetic acid (EDTA), 10% citric acid, 10% sodium citrate, apple vinegar, 5% acetic acid, 5% malic acid, and sodium hypochlorite. The concentration of calcium ions was measured by using flame atomic absorption spectrometry, and smear layer removal was determined by scanning electron microscopy. Mean +/- standard deviation, one-way analysis of variance, Tukey-Kramer, Kruskal-Wallis, Dunn, and kappa tests were used for statistical analysis. The use of 15% EDTA resulted in the greatest concentration of calcium ions followed by 10% citric acid; 15% EDTA and 10% citric acid were the most efficient solutions for removal of smear layer. (J Endod 2009;35:727-730)
Resumo:
Introduction: The greatest reduction in microhardness of the most superficial layer of dentin of the root canal lumen is desired. The use of chelating agents during biomechanical preparation of root canals removes smear layer, increasing the access of the irrigant into the dentin tubules to allow adequate disinfection, and also reduces dentin microhardness, facilitating the action of endodontic instruments. This study evaluated the effect of different chelating solutions on the microhardness of the most superficial dentin layer from the root canal lumen. Methods: Thirty-five recently extracted single-rooted maxillary central incisors were instrumented, and the roots were longitudinally sectioned in a mesiodistal direction to expose the entire canal extension. The specimens were distributed in seven groups according to the final irrigation: 15% EDTA, 10% citric acid, 5% malic acid, 5% acetic acid, apple vinegar, 10% sodium citrate, and control (no irrigation). A standardized volume of 50 mu L of each chelating solution was used for 5 minutes. Dentin microhardness was measured with a Knoop indenter under a 10-g load and a 15-second dwell time. Data were analyzed statistically by one-way analysis of variance and Tukey-Kramer multiple-comparison test at 5% significance level. Results: EDTA and citric acid had the greatest overall effect, causing a sharp decrease in dentin microhardness without a significant difference (p > .05) from each other. However, both chelators differed significantly from the other solutions (p < .001). Sodium citrate and deionized water were similar to each other (p > .05) and did not affect dentin microhardness. Apple vinegar, acetic acid, and malic acid were similar to each other (p > .05) and presented intermediate results. Conclusion: Except for sodium citrate, all tested chelating solutions reduced microhardness of the most superficial root canal dentin layer. EDTA and citric acid were the most efficient. (J Endod 2011;37:358-362)
Resumo:
The present study concentrates on the evaluation of the anti-glycation effect of some bioactive substances present in yerba mate (Ilex paraguariensis): 5-caffeoylquinic acid, caffeic acid and a sapogenin (oleanolic acid). Bovine serum albumin and histones were incubated in the presence of methylglyoxal with or without the addition of 5-caffeoylquinic acid, caffeic acid and oleanolic acid. After the incubation period, advanced glycation end product (AGE) fluorescence spectra were performed and protein structural changes were evaluated by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis. Chlorogenic acid, caffeic acid are the main substances responsible for the anti-glycation effect of mate tea. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The dorsal premammillary nucleus (PMd) has a critical role on the expression of defensive responses to predator odor. Anatomical evidence suggests that the PMd should also modulate memory processing through a projecting branch to the anterior thalamus. By using a pharmacological blockade of the PMd with the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5), we were able to confirm its role in the expression of unconditioned defensive responses, and further revealed that the nucleus is also involved in influencing associative mechanisms linking predatory threats to the related context. We have also tested whether olfactory fear conditioning, using coffee odor as CS, would be useful to model predator odor. Similar to cat odor, shock-paired coffee odor produced robust defensive behavior during exposure to the odor and to the associated context. Shock-paired coffee odor also up-regulated Fos expression in the PMd, and, as with cat odor, we showed that this nucleus is involved in the conditioned defensive responses to the shock-paired coffee odor and the contextual responses to the associated environment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The progression to end-stage renal failure is independent of the initial pathogenic mechanism. Metabolic acidosis is a common consequence of chronic renal failure that results from inadequate ammonium excretion and decreased tubular bicarbonate reabsorption. Protoporphyrin IX (PpIX) is the immediate metabolic precursor of the heme molecule. The purpose of this study was to evaluate the levels of erythrocytes protoporphyrin IX at an animal model during progressive renal disease. A total of 36 eight-week-old male Wistar rats were divided into six groups: Normal, 4 and 8 weeks after 5/6 nephrectomy (NX). Renal function was evaluated by creatinine clearance and plasma creatinine levels. The autofluorescence of erythrocytes porphyrin of healthy and NX rats was analyzed using fluorescence spectroscopy. Emission spectra were obtained by exciting the samples at 405 nm. Significant differences between normal and NX rats autofluorescence shape occurred in the 600-700 nm spectral region. A correlation was observed between emission band intensity at 635 nm and progression of renal disease.