480 resultados para laser model
Resumo:
Background: Previous work showed that daily ingestion of an aqueous soy extract fermented with Enterococcus faecium CRL 183 and Lactobacillus helveticus 416, supplemented or not with isoflavones, reduced the total cholesterol and non-HDL-cholesterol levels, increased the high-density lipoprotein (HDL) concentration and inhibited the raising of autoantibody against oxidized low-density lipoprotein (ox-LDL Ab) and the development of atherosclerotic lesions. Objective: The aim of this study was to characterize the fecal microbiota in order to investigate the possible correlation between fecal microbiota, serum lipid parameters and atherosclerotic lesion development in rabbits with induced hypercholesterolemia, that ingested the aqueous soy extract fermented with Enterococcus faecium CRL 183 and Lactobacillus helveticus 416. Methods: The rabbits were randomly allocated to five experimental groups (n = 6): control (C), hypercholesterolemic (H), hypercholesterolemic plus unfermented soy product (HUF), hypercholesterolemic plus fermented soy product (HF) and hypercholesterolemic plus isoflavone-supplemented fermented soy product (HIF). Lipid parameters and microbiota composition were analyzed on days 0 and 60 of the treatment and the atherosclerotic lesions were quantified at the end of the experiment. The fecal microbiota was characterized by enumerating the Lactobacillus spp., Bifidobacterium spp., Enterococcus spp., Enterobacteria and Clostridium spp. populations. Results: After 60 days of the experiment, intake of the probiotic soy product was correlated with significant increases (P < 0.05) on Lactobacillus spp., Bifidobacterium spp. and Enterococcus spp. and a decrease in the Enterobacteria population. A strong correlation was observed between microbiota composition and lipid profile. Populations of Enterococcus spp., Lactobacillus spp. and Bifidobacterium spp. were negatively correlated with total cholesterol, non-HDL-cholesterol, autoantibodies against oxidized LDL (ox-LDL Ab) and lesion size. HDL-C levels were positively correlated with Lactobacillus spp., Bifidobacterium spp., and Enterococcus spp. populations. Conclusion: In conclusion, daily ingestion of the probiotic soy product, supplemented or not with isoflavones, may contribute to a beneficial balance of the fecal microbiota and this modulation is associated with an improved cholesterol profile and inhibition of atherosclerotic lesion development.
Resumo:
Malnutrition modifies resistance to infection by impairing a number of physiological processes including hematopoesis and the immune response. In this study, we examined the production of Interleukin-4 (IL-4) and IL-10 in response to lipopolysaccharide (LPS) and also evaluated the cellularity of the blood, bone marrow, and spleen in a mouse model of protein-energy malnutrition. Two-month-old male Swiss mice were subjected to protein-energy malnutrition (PEM) with a low-protein diet (4%) as compared to the control diet (20%). When the experimental group lost approximately 20% of their original body weight, the animals from both groups received 1.25 mu g of LPS intravenously. The Cells ill the blood, bone marrow, and spleen were counted, and circulating levels of IL-4 and IL-10 were evaluated in animals stimulated with LPS. Cells from the spleen, bone marrow, and peritoneal cavity of non-inoculated animals were collected for Culture to evaluate the production of IL-4 and IL-10 after stimulating these cells with 1.25 mu g of LPS in vitro. Malnourished animals presented leucopenia and a severe reduction in bone marrow, spleen, and peritoneal cavity cellularity before and after Stimulus with LPS. The circulating levels of IL-10 were increased in malnourished animals inoculated with LPS when compared to control animals, although the levels of IL-4 did not differ. In cells cultured with LPS, we observed high levels of IL-10 in the bone marrow cells of malnourished animals. These findings suggest that malnourished mice present a deficient immune response to LPS. These alterations may be partly responsible for the immunodeficiency observed in these malnourished mice.
Resumo:
The aim of this study was to verify the capacity of the extracellular matrix (ECM) obtained from bone marrow of malnourished mice to sustain survival and to induce the proliferation of myeloid cells. We also verified the capacity of the tests to interact with in vitro hematopoietic cytokines. Male ""Swiss"" mice were submitted to protein malnutrition with a diet contents of 4% casein until they lost 20% of the original weight, while the group-control was kept with a diet content of 14% of casein. The bone marrow was extracted with 1.0 mg of aprotinin/mL in PBS. The proliferation tests were carried out with myeloid cell line FDCP-1, by the colorimetric method of reduction of the MTT. The obtained ECM from nourished and undernourished mice induced cellular proliferation in vitro. Tests performed with Il-3 and GM-CSF cytokines in a concentration of 10 and 500 rho g/mL displayed synergic and regulatory effects respectively. The ECM obtained from the malnourished group submitted to the binding to GM-CSF demonstrated higher cellular proliferation than the ECM obtained from the control group (p<0.05). The results suggest that the alterations in the composition of ECM of bone marrow caused by malnutrition might lead to modification of the GM-CSF activity modulation.
Resumo:
Sunless tanning formulas have become increasingly popular in recent years for their ability to give people convincing tans without the dangers of skin cancer. Most sunless tanners currently on the market contain dihydroxyacetone (DHA), a keto sugar with three carbons. The temporary pigment provided by these formulasis designed to resemble a UV-induced tan. This study evaluated the effectiveness of carbomer gels and cold process self emulsifying bases on skin pigmentation, using different concentrations of a chemical system composed of DHA and N-acetyl tyrosine, which are found in moulted snake skins and their effectiveness was tested by Mexameter (R) MX 18. Eight different sunless tanning formulas were developed, four of which were gels and four of which were emulsions (base, base plus 4.0%, 5.0% and 6.0% (w/w) of a system of DHA and N-acetyl tyrosine). Tests to determine the extent of artificial tanning were done by applying 30 mg cm(-2) of each formula onto standard sizes of moulted snake skin (2.0 cm x 3.0 cm). A Mexameter (R) MX 18 was used to evaluate the extent of coloration in the moulted snake skin at T(0) (before the application) and after 24, 48, 72, 168, 192 and 216 h. The moulted snake skins can be used as an alternative membrane model for in vitro sunless tanning efficacy tests due to their similarity to the human stratum corneum. The DHA concentration was found to influence the initiation of the pigmentation in both sunless tanning systems (emulsion and gel) as well as the time required to increases by a given amount on the tanning index. In the emulsion system, the DHA concentration also influenced the final value on the tanning index. The type of system (emulsion or gel) has no influence on the final value in the tanning index after 216 h for samples with the same DHA concentration.
Resumo:
Rutin is employed as antioxidant and to prevent the capillary fragility and, when incorporated in cosmetic emulsions, it must target the action site. In vitro cutaneous penetration studies through human skin is the ideal situation, however, there are difficulties to obtain and to maintain this tissue viability. Among the membrane models, shed snake skin presents itself as pure stratum corneum, providing barrier function similar to human and it is obtained without the animal sacrifice. The objectives of this research were the development and stability evaluation of a cosmetic emulsion containing rutin and propylene glycol (penetration enhancer) and the evaluation or rutin in vitro cutaneous penetration and retention from the emulsion, employing an alternative model biomembrane. Emulsion was developed with rutin and propylene glycol, both at 5.0% w/w. Active substance presented on the formulation was quantified by a validated spectrophotometric method at 361.0 nm. Rutin Rutin cutaneous penetration and retention was performed in vertical diffusion cells with shed snake skin of Crotalus durissus, as alternative model biomembrane, and distilled water and ethanol 99.5% (1:1), as receptor fluid. The experiment was conducted for six hours, at 37.0 +/- 0.5 degrees C with constant stirring of 300 rpm. Spectrophotometry at 410.0 nm, previously validated, determined the active substance after cutaneous penetration/ retention. Emulsion did not promote rutin cutaneous penetration through C. durissus skin, retaining 0.931 +/- 0.0391 mu g rutin/mg shed snake skin. The referred formulation was chemically stable for 30 days after stored at 25.0 +/- 2.0 degrees C, 5.0 +/- 0.5 degrees C and 45.0 +/- 0.5 degrees C. In conclusion, it has not been verified the active cutaneous penetration through the model biomembrane, but only its retention on the Crotalus durissus stratum corneum, condition considered stable for 30 days.
Resumo:
When a coherent light beam is scattered from a colloidal medium, in the observation plane, appears a random grainy image known as speckle pattern. The time evolution of this interference image carries information about the ensemble-averaged dynamics of the scatterer particles. The aim of this work was to evaluate the use of dynamic speckles as an alternative tool to monitoring frozen foams formulated with glucose and fructose syrups. Ice creams, after preparation and packing, were stored at 18 degrees C. Changes in properties of products were analyzed by speckle phenomena at three room temperatures (20 degrees C, 25 degrees C and 30 degrees C), minute by minute, during 50 min. Two moments were identified in which samples activity achieved significant levels. These instants were associated, respectively, to ice crystals melting and to air bubbles dissipation into the food matrix causing motion of diverse structures. As expected, ice crystals melting was first in formulations containing fructose syrup, but for same samples, air losses were delayed. Speckle methodology was satisfactory to observe temporal evolution of transient process, opening goods prospects to application, still incoming, in foodstuffs researches. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this study, twenty hydroxylated and acetoxylated 3-phenylcoumarin derivatives were evaluated as inhibitors of immune complex-stimulated neutrophil oxidative metabolism and possible modulators of the inflammatory tissue damage found in type III hypersensitivity reactions. By using lucigenin- and luminol-enhanced chemiluminescence assays (CL-luc and CL-lum, respectively), we found that the 6,7-dihydroxylated and 6,7-diacetoxylated 3-phenylcoumarin derivatives were the most effective inhibitors. Different structural features of the other compounds determined CL-luc and/or CL-lum inhibition. The 2D-QSAR analysis suggested the importance of hydrophobic contributions to explain these effects. In addition, a statistically significant 3D-QSAR model built applying GRIND descriptors allowed us to propose a virtual receptor site considering pharmacophoric regions and mutual distances. Furthermore, the 3-phenylcoumarins studied were not toxic to neutrophils under the assessed conditions. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
The quenching of the triplet state of three n-alkyl 3-nitrophenyl ethers: 3-nitroanisol (3-NA), n-butyl 3-nitrophenyl ether (3-NB) and n-decyl 3-nitrophenyl ether (3-ND) by four aniline derivatives: aniline (AN), N,N-dimethylaniline (DMA), 2,4,6-trimethylaniline (TMA), and 4-tetradecylaniline (TDA), was investigated in aqueous micellar SDS solutions by laser flash photolysis. The transient absorption spectra for 3-NA and 3-NB reveal the formation of long-lived intermediate species in the presence of all four quenchers. while for 3-ND no amine-induced intermediates are observed. Comparison of the transient absorption spectra of the probe 3-NA in the presence of DMA in aqueous and micellar solutions shows that the intermediate species are favored by the SDS micelles. With DMA and TMA as quenchers the intermediates are suggested to be the ion radicals generated by single electron transfer from the amine to the probe in the triplet excited state. For the quenchers AN and TDA, the intermediates may be a-complexes. The relative quenching efficiencies generally decrease as the affinity of the quencher for the micellar phase (AN < DMA < TMA < TDA) increases and the mobility of the excited probe (3-NA > 2-NB) decreases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The skin is a large and accessible area of the body, offering the possibility to be used as an alternative route for drug delivery. In the last few years strong progress has been made on the developing of nanoparticulate systems for specific applications. The interaction of such small particles with human skin and their possible penetration attracted some interest from toxicological as well as from drug delivery perspectives. As size is assumed to play a key role, the aim of the present work was to investigate the penetration profile of very small model particles (similar to 4 nm) into excised human skin under conditions chosen to mimic the in vivo situation. Possible application procedures such as massaging the formulation (5 to 10 minutes) were analyzed by non-invasive multiphoton- and confocal laser scanning microscopy (MPM, CLSM). Furthermore, the application on damaged skin was taken into account by deliberately removing parts of the stratum corneum. Although it was clearly observed that the mechanical actions affected the distribution pattern of the QDs on the skin surface, there was no evidence of penetration into the skin in all cases tested. QDs could be found in deeper layers only after massaging of damaged skin for 10 min. Taking these data into account, obtained on the gold standard human skin, the potential applications of nanoparticulate systems to act as carrier delivering drugs into intact skin might be limited and are only of interest for partly damaged skin.
Resumo:
Solubility represents a limiting factor when testing new compounds in animal experiments, since solubilizing agents generally have pharmacological effects that can interfere with the studied substance. Vehicles are commonly used for solubilizing certain substances including apolar and polar extracts obtained from medicinal plants. In this study, fifteen vehicles were investigated on mice neuromuscular preparations. A known in vitro neuroblocker myotoxin from Bothrops jararacussu venom, bothropstoxin-I, was used as a pharmacological tool for testing the medicinal potential of apolar and polar extracts (hexane, dichloromethane, ethyl acetate and methanol) obtained from Casearia sylvestris Sw. leaves, which in turn were used for testing their solubility and concomitantly to produce no change on basal response of indirectly stimulated mouse phrenic nerve-diaphragm preparations. Taken together in vitro biological system and extracts solubility, our results showed that dimethyl sulphoxide and polyethylene glycol 400 were the better vehicles, and methanol extract solubilized on PEG 400 was the only one able to act against the paralysis induced by the myotoxin. Thus, this study points out to the relevant role that vehicles exhibit for extracting the potential pharmacological activity of plants in a given test system.
Resumo:
The aim of this study was to investigate the immunomodulatory effects of glucocorticoids on the immune response to Strongyloides venezuelensis in mice. Balb/c mice were infected with S. venezuelensis and treated with Dexamethasone (Dexa) or vehicle. Dexa treatment increased circulating blood neutrophil numbers and inhibited eosinophil and mononuclear cell accumulation in the blood, bronchoalveolar, and peritoneal fluid compared with control animals. Moreover, Dexa decreased tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin-3 (IL-3), IL-4, IL-5, IL-10, and IL-12 production in the lungs and circulating immunoglobulin G1. (IgG1), IgG2a, and IgE antibody levels while increasing the overall parasite burden in the feces and intestine. Dexa treatment enhanced the fertility of female nematodes relative to untreated and infected mice. In summary, the alterations in the immune response induced by Dexa resulted in a blunted, aberrant immune response associated with increased parasite burden. This phenomenon is similar to that observed in S. stercoralis-infected humans who are taking immunosuppressive or antiinflammatory drugs, including corticosteroids.
Resumo:
We have shown that the ethanolic extract of Lafoensia pacari inhibits eosinophilic inflammation induced by Toxocara canis infection, and that ellagic acid is the secondary metabolite responsible for the anti-eosinophilic activity seen in a model of beta-glucan peritonitis. In the present study, we investigated the preventive and curative effects of L. pacari extract and ellagic acid on allergic lung inflammation using a murine model of ovalbumin-induced asthma. In bronchoalveolar lavage fluid, preventive (22-day) treatment with L. pacari (200 mg/kg) and ellagic acid (10 mg/kg) inhibited neutrophil counts (by 75% and 57%) and eosinophil counts (by 78% and 68%). L. pacari reduced IL-4 and IL-13 levels (by 67% and 73%), whereas ellagic acid reduced IL-4, IL-5 and IL-13 (by 67%, 88% and 85%). To investigate curative anti-inflammatory effects, we treated mice daily with ellagic acid (0.1, 1, or 10 mg/kg), also treating selected mice with L. pacari (200 mg/kg) from day 18 to day 22. The highest ellagic acid dose reduced neutrophil and eosinophil numbers (by 59% and 82%), inhibited IL-4, IL-5, and IL-13 (by 62%,61%, and 49%). Neither L. pacari nor ellagic acid suppressed ovalbumin-induced airway hyperresponsiveness or cysteinyl leukotriene synthesis in lung homogenates. In mice treated with ellagic acid (10 mg/kg) or L. pacari (200 mg/kg) at 10 min after the second ovalbumin challenge, eosinophil numbers were 53% and 69% lower, respectively. Cytokine levels were unaffected by this treatment. L. pacari and ellagic acid are effective eosinophilic inflammation suppressors, suggesting a potential for treating allergies. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Minimally processed refrigerated ready-to-eat fishes may offer health risk of severe infection to susceptible individuals due to contamination by the psychrotolerant bacterium L monocytogenes. In this work, inhibition of L monocytogenes by a plant extract and lactic acid bacteria (IAB) was studied in model fish systems kept at 5 degrees C for 35 days. For that, fillets of tropical fish ""surubim"" (Pseudoplatystoma sp.) and hydroalcoholic extract of the plant Lippia sidoides Cham. (""alecrim pimenta"") were used. Fish peptone broth (FPB), ""surubim"" broth and ""surubim"" homogenate were inoculated with combinations of L monocytogenes and bacteriocin-producing Carnobacterium maltaromaticum (C2 and A9b(+)) and non bacteriocin-producing C. maltaromaticum (A9b(-)), in the presence or absence of extract of ""alecrim pimenta"" (EAP). In all model systems, monocultures of L monocytogenes and carnobacteria reached final populations >= 10(8) CFU/ml after 35 days, except for L monocytogenes in ""surubim"" homogenate (10(4) CFU/ml). In FPB, EAP alone and combined with cultures of LAB inhibited L monocytogenes but carnobacteria without EAP were only weakly antilisterial. In ""surubim"" broth, EAP alone did not prevent L monocytogenes growth but cultures of carnobacteria combined or not with EAP inhibited L monocytogenes, with more pronounced effect being observed for C maltaromaticum C2, which produced bacteriocin. In ""surubim"" homogenate, EAP alone and combined with cultures of C. maltaromaticum A9b(-) and A9b(+) were strongly inhibitory to L monocytogenes, while C maltaromaticum C2 with EAP caused transient inhibition of L monocytogenes. No significant inhibition of L monocytogenes was observed for carnobacteria in ""surubim"" homogenate without EAP. In conclusion, it was observed that the use of EAP and cultures of carnobacteria have potential to inhibit L monocytogenes in fish systems and the applications should be carefully studied, considering the influence of food matrix. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
The purposes of this study were to evaluate in vitro the influence of different frequencies of Er:YAG laser on the human dentin caries removal capacity. Thirty fragments obtained from third molars were randomly assigned into three groups (n = 10) according to the laser frequency used: 4, 6, and 10 Hz. The caries lesion (+/-1 mm deep) was induced before the irradiation by S. mutans cultures for 6 weeks. The specimens of all groups were irradiated with 200 mJ of energy in noncontact and focused mode under constant refrigeration (water flow: 2.5 mL/min). Quantitative analysis of the caries removal was performed by DIAGNOdent (TM) and the Axion Vision (TM) software. Qualitative analysis was performed by Scanning electron microscope (SEM) and light microscope (LM). Data were analyzed by ANOVA and Fishers` tests. The DIAGNOdent (TM) revealed that the caries removal was similar with 4 and 6 Hz and was superior with 10 Hz (P < 0.05). The analysis with Axion Vision (TM) software revealed that the caries removal was similar with 6 and 10 Hz and the 4 Hz group promoted the lowest caries removal. Through SEM morphologic analysis, some specimens irradiated with 4 Hz presented, under the demineralized dentin, a disorganized collagenous matrix. The LM images revealed that all frequencies used promoted irregular caries removal, being observed over preparations with 6 and 10 Hz. It can be concluded that the increase of Er:YAG laser frequency provided a higher dentin caries removal without selectivity to the disorganized dentin. Microsc. Res. Tech. 74:281-286, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Background/Aims: It is a challenge to adapt traditional in vitro diffusion experiments to ocular tissue. Thus, the aim of this work was to present experimental evidence on the integrity of the porcine cornea, barrier function and maintenance of electrical properties for 6 h of experiment when the tissue is mounted on an inexpensive and easy-to-use in vitro model for ocular iontophoresis. Methods: A modified Franz diffusion cell containing two ports for the insertion of the electrodes and a receiving compartment that does not need gassing with carbogen was used in the studies. Corneal electron transmission microscopy images were obtained, and diffusion experiments with fluorescent markers were performed to examine the integrity of the barrier function. The preservation of the negatively charged corneal epithelium was verified by the determination of the electro-osmotic flow of a hydrophilic and non-ionized molecule. Results: The diffusion cell was able to maintain the temperature, homogenization, porcine epithelial corneal structure integrity, barrier function and electrical characteristics throughout the 6 h of permeation experiment, without requiring CO(2) gassing when the receiving chamber was filled with 25 m M of HEPES buffer solution. Conclusion: The system described here is inexpensive, easy to handle and reliable as an in vitro model for iontophoretic ocular delivery studies. Copyright (C) 2010 S. Karger AG, Basel