274 resultados para In vivo–in vitro correlation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statement of problem. Dental fractures can occur in endodontically treated teeth restored with posts. Purpose. The purpose of this study was to evaluate the in vitro fracture resistance of roots with glass-fiber and metal posts of different lengths. Material and methods. Sixty endodontically treated maxillary canines were embedded in acrylic resin, except for 4 mm of the cervical area, after removing the clinical crowns. The post spaces were opened with a cylindrical bur at low speed attached to a surveyor, resulting in preparations with lengths of 6 mm (group 6 mm), 8 mm (group 8 mm), or 10 mm (group 10 mm). Each group was divided into 2 subgroups according to the post material: cast post and core or glass-fiber post (n=30). The posts were luted with dual-polymerizing resin cement (Panavia F). Cast posts and cores of Co-Cr (Resilient Plus) crowns were made and cemented with zinc phosphate. Specimens were subjected to increasing compressive load (N) until fracture. Data were analyzed with 2-way ANOVA and the Tukey-Kramer test (alpha=.05). Results. The ANOVA analysis indicated significant differences (P<.05) among the groups, and the Tukey test revealed no significant difference among the metal posts of 6-mm length (26.5 N +/- 13.4), 8-mm length (25.2 N +/- 13.9), and 10-mm length (17.1 N +/- 5.2). Also, in the glass-fiber post group, there was no significant difference when posts of 8-mm length (13.4 N +/- 11.0) were compared with the 6-mm (6.9 N +/- 4.6) and 10-mm (31.7 N +/- 13.1) groups. The 10-mm-long post displayed superior fracture resistance, and the 6-mm-long post showed significantly lower mean values (P<.001). Conclusions. Within the limitations of this study, it was concluded that the glass-fiber post represents a viable alternative to the cast metal post, increasing the resistance to fracture of endodontically treated canines. (J Prosthet Dent 2009;101:183-188)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this in vitro study was to evaluate bacterial leakage along the implant-abutment interface under unloaded conditions. Twelve premachined abutments with plastic sleeves and 12 dental implants were used in this study. Prior to tests of bacterial leakage, samples from the inner parts of the implants were collected with sterile microbrushes to serve as negative controls for contamination. After casting, the abutments were tightened to 32 Ncm on the implants. The assemblies were immersed in 2.0 mL of human saliva and incubated for 7 days. After this period, possible contamination of the internal parts of the implants was evaluated using the DNA Checkerboard method. Microorganisms were found in the internal surfaces of all the implants evaluated. Aggregatibacter actinomycetemcomitans and Capnocytophaga gingivalis were the most incident species. No microorganisms were found in the samples recovered from the implants before contamination testing (negative control). Bacterial species from human saliva may penetrate the implant-abutment interface under unloaded conditions. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:782-787

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: Gaps between an abutment and a dental implant are unavoidable, and microleakage may occur, leading to problems such as malodor and peri-implantitis. The aim of the present in vitro study was to investigate leakage of Staphylococcus aureus through the implant/abutment interface by the method of bacterial culture, and to compare the leakage rates of two different types of implant-abutment connections. Materials and Methods: Twenty Morse taper implants with abutments were divided into two groups: group A, which were evaluated for microleakage into the inner part of the implants, and group B, which were evaluated for microleakage from the inner part of the implants. Twenty internal-hexagon implants with abutments were also divided into two groups: group C, which were evaluated for microleakage into the inner part of the implants, and group D, which were evaluated for microleakage from the inner part of the implants. For the evaluation of leakage from the implants, the assemblies had the inner parts inoculated with S aureus, and each assembly was incubated in sterile brain heart infusion broth for 1 week. For assessment of leakage into the implants, each assembly was submerged in 4 mL S aureus culture in tubes and incubated for 2 weeks. The microleakage of the two implant connections was compared. Results: Microbial leakage occurred in all groups, and there was no statistically significant difference between groups A and C or between groups B and D. Conclusions: In vitro, S aureus leakage through the implant/abutment interface occurred with both Morse taper and internal-hexagon implants. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:56-62

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective The purpose of this study was to evaluate the retention force of an O-ring attachment system in different inclinations to the ideal path of insertion, using devices to compensate angulations. Material and methods Two implants were inserted into an aluminum base, and ball attachments were screwed to implants. Cylinders with O-rings were placed on ball attachments and connected to the test device using positioners to compensate implant angulations (0 degrees, 7 degrees, and 14 degrees). Plexiglass bases were used to simulate implant angulations. The base and the test device were positioned in a testing apparatus, which simulated insertion/removal of an overdenture. A total of 2900 cycles, simulating 2 years of overdenture use, were performed and 36 O-rings were tested. The force required for each cycle was recorded with computer software. Longitudinal sections of ball attachment-positioner-cylinder with O-rings of each angulation were obtained to analyze the relationship among them, and O-ring sections tested in each angulation were compared with an unused counterpart. A mixed linear model was used to analyze the data, and the comparison was performed by orthogonal contrasts (alpha=0.05). Results At 0 degrees, the retention force decreased significantly over time, and the retention force was significantly different in all comparisons, except from 12 to 18 months. When the implants were positioned at 7 degrees, the retention force was statistically different at 0 and 24 months. At 14 degrees, significant differences were found from 6 and 12 to 24 months. Conclusions Within the limitations of this study, it was concluded that O-rings for implant/attachments perpendicular to the occlusal plane were adequately retentive over the first year and that the retentive capacity of O-ring was affected by implant inclinations despite the proposed positioners. To cite this article:Rodrigues RCS, Faria ACL, Macedo AP, Sartori IAM, de Mattos MGC, Ribeiro RF. An in vitro study of non-axial forces upon the retention of an O-ring attachment.Clin. Oral Impl. Res. 20, 2009; 1314-1319.doi: 10.1111/j.1600-0501.2009.01742.x.