355 resultados para TRIPLET-STATE CHARACTERISTICS
Resumo:
Many factors affect the airflow patterns, thermal comfort, contaminant removal efficiency and indoor air quality at individual workstations in office buildings. In this study, four ventilation systems were used in a test chamber designed to represent an area of a typical office building floor and reproduce the real characteristics of a modern office space. Measurements of particle concentration and thermal parameters (temperature and velocity) were carried out for each of the following types of ventilation systems: (a) conventional air distribution system with ceiling supply and return; (b) conventional air distribution system with ceiling supply and return near the floor; (c) underfloor air distribution system; and (d) split system. The measurements aimed to analyse the particle removal efficiency in the breathing zone and the impact of particle concentration on an individual at the workstation. The efficiency of the ventilation system was analysed by measuring particle size and concentration, ventilation effectiveness and the indoor/outdoor ratio. Each ventilation system showed different airflow patterns and the efficiency of each ventilation system in the removal of the particles in the breathing zone showed no correlation with particle size and the various methods of analyses used. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sossego was the first Vale SAG mill operation to process copper-gold ore. It is located in the State of Para, southeastern Amazon region of Brazil. In the first three years of continuous operation, Vale investigated different alternatives for improving the circuit`s performance by investigating operating conditions, mainly focusing on the SAG mill. It was decided to further assess the performance of the comminution circuit as a function of ore characteristics. A comprehensive ore characterization program was then conducted, together with the calibration of mathematical models on the basis of surveys carried out at the industrial circuit. The simulator was then used to predict the throughput associated to each ore type, as well as to establish the optimized circuit configuration and tailored operating conditions. This paper describes in detail the main aspects of optimizing the industrial circuit performance, as well as the successful method for predicting the production as a function of ore characteristics and circuit configuration.
Resumo:
Polyurethane composites reinforced with curaua fiber at 5, 10 and 20% mass/mass proportions were prepared by using the conventional melt-mixing method. The influence of curaua fibers on the thermal behavior and polymer cohesiveness in polyurethane matrix was evaluated by dynamic mechanical thermal analysis (DMTA) and by differential scanning calorimetry (DSC). This specific interaction between the fibers and the hard segment domain was influenced by the behavior of the storage modulus E` and the loss modulus EaEuro(3) curves. The polyurethane PU80 is much stiffer and resistant than the other composites at low temperatures up to 70A degrees C. All samples were thermoplastic and presented a rubbery plateau over a wide temperature range above the glass transition temperature and a thermoplastic flow around 170A degrees C.
Resumo:
Steady-state and time-resolved fluorescence measurements are reported for several crude oils and their saturates, aromatics, resins, and asphaltenes (SARA) fractions (saturates, aromatics and resins), isolated from maltene after pentane precipitation of the asphaltenes. There is a clear relationship between the American Petroleum Institute (API) grade of the crude oils and their fluorescence emission intensity and maxima. Dilution of the crude oil samples with cyclohexane results in a significant increase of emission intensity and a blue shift, which is a clear indication of the presence of energy-transfer processes between the emissive chromophores present in the crude oil. Both the fluorescence spectra and the mean fluorescence lifetimes of the three SARA fractions and their mixtures indicate that the aromatics and resins are the major contributors to the emission of crude oils. Total synchronous fluorescence scan (TSFS) spectral maps are preferable to steady-state fluorescence spectra for discriminating between the fractions, making TSFS maps a particularly interesting choice for the development of fluorescence-based methods for the characterization and classification of crude oils. More detailed studies, using a much wider range of excitation and emission wavelengths, are necessary to determine the utility of time-resolved fluorescence (TRF) data for this purpose. Preliminary models constructed using TSFS spectra from 21 crude oil samples show a very good correlation (R(2) > 0.88) between the calculated and measured values of API and the SARA fraction concentrations. The use of models based on a fast fluorescence measurement may thus be an alternative to tedious and time-consuming chemical analysis in refineries.
Resumo:
In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the Output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input-output, state variable feedback pole assignment, International journal of Control 46 (1987) 1867-1881; C. Wang, P.C. Young, Direct digital control by input-output, state variable feedback: theoretical background, International journal of Control 47 (1988) 97-109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we propose an approach to the transient and steady-state analysis of the affine combination of one fast and one slow adaptive filters. The theoretical models are based on expressions for the excess mean-square error (EMSE) and cross-EMSE of the component filters, which allows their application to different combinations of algorithms, such as least mean-squares (LMS), normalized LMS (NLMS), and constant modulus algorithm (CMA), considering white or colored inputs and stationary or nonstationary environments. Since the desired universal behavior of the combination depends on the correct estimation of the mixing parameter at every instant, its adaptation is also taken into account in the transient analysis. Furthermore, we propose normalized algorithms for the adaptation of the mixing parameter that exhibit good performance. Good agreement between analysis and simulation results is always observed.
Resumo:
This work characterizes the analog performance of SOI n-MuGFETs with HfSiO gate dielectric and TiN metal gate with respect to the influence of the high-k post-nitridation. TiN thickness and device rotation. A thinner TiN metal gate is found favorable for improved analog characteristics showing an increase in intrinsic voltage gain. The devices where the high-k material is subjected to a nitridation step indicated a degradation of the Early voltage (V(EA)) values which resulted in a lower voltage gain. The 45 degrees rotated devices have a smaller V(EA) than the standard ones when a HfSiO dielectric is used. However, the higher transconductance of these devices, due to the increased mobility in the (1 0 0) sidewall orientation, compensates this V(EA) degradation of the voltage gain, keeping it nearly equal to the voltage gain values of the standard devices. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work SiOxNy films are produced and characterized. Series of samples were deposited by the plasma enhanced chemical vapor deposition (PECVD) technique at low temperatures from silane (SiH4), nitrous oxide (N2O) and helium (He) precursor gaseous mixtures, at different deposition power in order to analyze the effect of this parameter on the films structural properties, on the SiOxNy/Si interface quality and on the SiOxNy effective charge density. In order to compare the film structural properties with the interface (SiOxNy/Si) quality and effective charge density, MOS capacitors were fabricated using these films as dielectric layer. X-ray absorption near-edge spectroscopy (XANES), at the Si-K edge, was utilized to investigate the structure of the films and the material bonding characteristics were analyzed through Fourier transform infrared spectroscopy (FTIR). The MOS capacitors were characterized by low and high frequency capacitance (C-V) measurements, in order to obtain the interface state density (D-it) and the effective charge density (N-ss). An effective charge density linear reduction for decreasing deposition power was observed, result that is attributed to the smaller amount of ions present in the plasma for low RF power. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work considers a semi-implicit system A, that is, a pair (S, y), where S is an explicit system described by a state representation (x)over dot(t) = f(t, x(t), u(t)), where x(t) is an element of R(n) and u(t) is an element of R(m), which is subject to a set of algebraic constraints y(t) = h(t, x(t), u(t)) = 0, where y(t) is an element of R(l). An input candidate is a set of functions v = (v(1),.... v(s)), which may depend on time t, on x, and on u and its derivatives up to a Finite order. The problem of finding a (local) proper state representation (z)over dot = g(t, z, v) with input v for the implicit system Delta is studied in this article. The main result shows necessary and sufficient conditions for the solution of this problem, under mild assumptions on the class of admissible state representations of Delta. These solvability conditions rely on an integrability test that is computed from the explicit system S. The approach of this article is the infinite-dimensional differential geometric setting of Fliess, Levine, Martin, and Rouchon (1999) (`A Lie-Backlund Approach to Equivalence and Flatness of Nonlinear Systems`, IEEE Transactions on Automatic Control, 44(5), (922-937)).
Resumo:
Second-order phase locked loops (PLLs) are devices that are able to provide synchronization between the nodes in a network even under severe quality restrictions in the signal propagation. Consequently, they are widely used in telecommunication and control. Conventional master-slave (M-S) clock-distribution systems are being, replaced by mutually connected (MC) ones due to their good potential to be used in new types of application such as wireless sensor networks, distributed computation and communication systems. Here, by using an analytical reasoning, a nonlinear algebraic system of equations is proposed to establish the existence conditions for the synchronous state in an MC PLL network. Numerical experiments confirm the analytical results and provide ideas about how the network parameters affect the reachability of the synchronous state. The phase-difference oscillation amplitudes are related to the node parameters helping to design PLL neural networks. Furthermore, estimation of the acquisition time depending on the node parameters allows the performance evaluation of time distribution systems and neural networks based on phase-locked techniques. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Aims To verify whether spectral components of atrial electrograms (AE) during sinus rhythm (SR) correlate with cardiac ganglionated plexus (GP) sites. Methods and results Thirteen patients undergoing atrial fibrillation (AF) ablation were prospectively enrolled. Prior to radio frequency application, endocardial AE were recorded with a sequential point-by-point approach. Electrical stimuli were delivered at 20 Hz, amplitude 100 V, and pulse width of 4 ms. A vagal response was defined as a high-frequency stimulation (HFS) evoked atrioventricular block or a prolongation of RR interval. Spectral analysis was performed on single AE during SR, sampling rate of 1000 Hz, Hanning window. Overall, 1488 SR electrograms were analysed from 186 different left atrium sites, 129 of them corresponding to negative vagal response sites, and 57 to positive response sites. The electrogram duration and the number of deflections were similar in positive and negative response sites. Spectral power density of sites with vagal response was lower between 26 and 83 Hz and higher between 107 and 200 Hz compared with negative response sites. The area between 120 and 170 Hz normalized to the total spectrum area was tested as a diagnostic parameter. Receiver operating characteristic curve analysis demonstrated that an area120-170/area(total) value >0.14 identified vagal sites with 70.9% sensitivity and 72.1% specificity. Conclusion Spectral analysis of AE during SR in sites that correspond to the anatomical location of the GP is feasible and may be a simpler method of mapping the cardiac autonomic nervous system, compared with the HFS technique.
Resumo:
This work considers a nonlinear time-varying system described by a state representation, with input u and state x. A given set of functions v, which is not necessarily the original input u of the system, is the (new) input candidate. The main result provides necessary and sufficient conditions for the existence of a local classical state space representation with input v. These conditions rely on integrability tests that are based on a derived flag. As a byproduct, one obtains a sufficient condition of differential flatness of nonlinear systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The present work reports the porous alumina structures fabrication and their quantitative structural characteristics study based on mathematical morphology analysis by using the SEM images. The algorithm used in this work was implemented in 6.2 MATLAB software. Using the algorithm it was possible to obtain the distribution of maximum, minimum and average radius of the pores in porous alumina structures. Additionally, with the calculus of the area occupied by the pores, it was possible to obtain the porosity of the structures. The quantitative results could be obtained and related to the process fabrication characteristics, showing to be reliable and promising to be used to control the pores formation process. Then, this technique could provide a more accurate determination of pore sizes and pores distribution. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This study examines the effects of partially or completely replacing pork backfat with soybean oil in mortadella production. Mortadella sausages of various formulations showed no differences (P > 0.05) in any of the technological and physico-chemical parameters evaluated (process yield, shear force, pH, water activity and proximate composition). When compared to products made with pork backfat, those made with vegetable oil had a higher unsaturated fatty acid content (P <= 0.05) and a similar cholesterol content (P > 0.05). Products made with vegetable oil scored lower (P <= 0.05) than those made with pork fat on all of the evaluated sensory attributes (colour, odour, flavour, texture and overall acceptability).
Resumo:
MARTINS, A. R. (Institute of Biology, State University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil), N. PUT, (Division of Biology and Education, University of Vechta, 49377 Vechta, Germany), A. N. SOARES, A.B BOMB, and B. APPEZZATO DA GLORIA (Biological Science Department, Escola Superior de Agricultura `Luiz de Queiroz`, University of Sao Paulo, 13418-900, Piracicaba, SP, Brazil). J. Torrey Bot. Soc. 137: 220-235. 2010.-New approaches to underground systems in Brazilian Smilax species (Smilacaceae). Scientific studies show that the watery extract of the thickened underground stem and its adventitious roots of the genus Smilax can act as a therapeutic agent in immunoinflammatory disorders, such as rheumatic arthritis. Brazilians have used this genus of plants in folk medicine, however it is very hard to identify these species, since the morphology of the underground systems is very similar in this group. For better identification of those systems, we studied six species of Smilax L. (S. brasiliensis, S. campestris, S. cissoides, S. goyazana, S. oblongifolia and S. rufescens), collected in different regions of Brazil with different physiognomies and soil characteristics. The main purpose is to describe the morpho-anatomy of the underground systems and to analyze if their structure depends on environmental conditions. The underground stem (rhizophore) is of brown color and it is knotty, massive, slender (S. rufescens) or tuberous (S. brasiliensis, S. campestris, S. cissoides, S. goyazana and S. oblongifolia). The tuberization is a result of primary thickened meristem (PTM) activity. The color and thickness of the adventitious roots change during development because the epidermis and outer cortex are disposed of, so the inner cortex becomes the new covering tissue with lignified and dark color cells. There are differences in starch grain shapes in mature roots. The chemical attributes of the soil are very similar in all studied environments and, even when soil characteristics varied, all the species` underground system was distributed close to the soil surface (10 to 15 cm deep). The species exhibited clonal growth hence their underground system functions as storage structures and the axillary buds can sprout into new stems. Only Smilax rufescens, collected in sandy soil of Restinga, has vegetative dispersal due to the runners.