539 resultados para Fundação de Winkler
Resumo:
Two known sesquiterpenes (1R*,2S*,3R*,5S*,8S*,9R*)-2,3,5,9-tetramethyltricyclo[6.3.0.0(1,5)]undecan-2-ol and (1S*,2S*,3S*,5S*,8S*,9S*)-2,3,5,9-tetramethyltricyclo-[6.3.0.0(1,5)]undecan-2-ol were isolated for the first time from the essential oil of the red seaweed Laurencia dendroidea collected in the Brazilian coast. These compounds were not active against eight bacteria strains and the yeast Candida albicans, but showed some antioxidant activity. Both compounds were also found in other seaweed species showing that they are not exclusive taxonomic markers to the genus Laurencia.
Resumo:
This work focus on the influence of solvent on the photophysical properties of chlorophyll α and pheophytin. Both compounds are related to the photosynthesis process and are considered prototypes of photosensitizers in Photodynamic Therapy. Fluorescence measurements were developed using water/ethanol mixtures at different compositions, since both solvents could be employed in biological applications. The spectroscopic properties of these compounds undergo profound changes depending on water content in the ethanol due to auto-aggregation processes. The major hydrophobicity and the lower dielectric constant of ethanol when compared with water precluded significantly the auto-aggregation process of these compounds.
Resumo:
Enzymes are extremely efficient catalysts. Here, part of the mechanisms proposed to explain this catalytic power will be compared to quantitative experimental results and computer simulations. Influence of the enzymatic environment over species along the reaction coordinate will be analysed. Concepts of transition state stabilisation and reactant destabilisation will be confronted. Divided site model and near-attack conformation hypotheses will also be discussed. Molecular interactions such as covalent catalysis, general acid-base catalysis, electrostatics, entropic effects, steric hindrance, quantum and dynamical effects will also be analysed as sources of catalysis. Reaction mechanisms, in particular that catalysed by protein tyrosine phosphatases, illustrate the concepts.
Resumo:
A systematic study of the reaction of β-hydroxy ethers with ruthenium tetraoxide (RuO4), generated in situ from ruthenium trichloride and sodium periodate, is presented, leading to nine-membered ring keto-lactones in moderate yields. Three different solvent systems - AcOEt/MeCN/H2O, MeCN/H2O and DMC/H2O - were studied leading to the desired products in lower yields than those obtained with the classical mixture of CCl4/MeCN/H2O, commonly used in reactions promoted by this oxidant. However, it is noteworthy that these new solvent systems represent greener alternatives to the chlorinated solvents used in the oxidative cleavage of β-hydroxy ethers by RuO4.
Resumo:
Chemiluminescence properties of the peroxyoxalate reaction in the presence of activators bearing electron withdrawing substituents were studied, to evaluate the possible occurrence of an inverse electron transfer, from the peroxide intermediate to the activator, in its chemiexcitation step. Relative catalytic rate constants and singlet quantum yields were obtained for the peroxyoxalate reaction, using 9-chloro, 9,10-dichloro, 9-cyano and 9,10-dicyanoanthracenes as activators. The linear free-energy correlation of the relative rate constants with the activators' reduction potentials and the dependence of the quantum yields on the released energy confirm, for the first time, the occurrence of this inverse electron transfer.
Resumo:
Production of ethanol from biomass fermentation has gained much attention recently. Biomass cellulosic material is first converted into glucose either by chemical or by enzymatic process, and then glucose is fermented to ethanol. Considering the current scenario, where many efforts are devoted for the search of green routes to obtaining ethanol from renewable sources, this review presents the relationship between structure and properties of cellulosic material, pre-treatments and hydrolysis of cellulosic material, and structure and function of cellulase enzyme complex.
Resumo:
This work describes methods for the simultaneous determination of Cd and Pb by graphite furnace atomic absorption spectrometry and As by hydride generation atomic absorption spectrometry in Brazilian nuts. The samples (~ 0.300 g) were digested to clear solutions in a closed vessel microwave oven. The pyrolysis and atomization temperatures for simultaneous determinations of Cd and Pb were 1100 and 2100 °C, respectively, using 0.5% (w v-1) NH4H2PO4 + 0.03% (w v-1) Mg(NO3)2 as chemical modifier. The limits of detection (3Δ) were 3.8 μg kg-1 for As, 0.86 μg kg-1 for Cd and 13 μg kg-1 for Pb. The reliability of the entire procedures was confirmed by peach leaves (No. 1547 - NIST) certified reference material analysis and addition and recovery tests. The found concentrations presented no statistical differences at the 95% confidence level.
Resumo:
In the scope of our ongoing research on bioactive agents from Brazilian flora, twenty-four extracts and fractions obtained from Piper arboreum Aub. and Piper tuberculatum Jacq. (Piperaceae) were screened for trypanocidal activity by using MTT colorimetric assay. The strongest activity was found in hexane fractions from the leaves of P. arboreum (IC50= 13.3 µg/ mL) and P. tuberculatum (IC50 = 17.2 µg/mL). Hexane fractions of the fruits of P. tuberculatum and P. arboreum showed potent toxic effects on epimastigote forms of Trypanosoma cruzi, with values of IC50 (µg/mL) of 32.2 and 31.3, respectively. Additionally, the phytochemical study of the hexane fraction of P. arboreum leaves furnished two pyrrolidine amides, piperyline (1) and 4,5-dihydropiperyline (2), which could be responsible, at least in part for the observed antiprotozoal activity.
Resumo:
This is a review of direct analysis using solid sampling graphite furnace atomic absorption spectrometry. Greater emphasis is dedicated to sample preparation, sample homogeneity, calibration and its application to microanalysis and micro-homogeneity studies. The main advantages and some difficulties related to the applicability of this technique are discussed. A literature search on the application of solid sampling graphite furnace atomic absorption spectrometry in trace element determination in many kinds of samples, including biological, clinical, technological and environmental ones, is also presented.
Resumo:
We report the synthesis of single-phase, crystalline CdSiO3 nanostructures at 580ºC; to the best of our knowledge, this is the lowest temperature at which this material is reported to form. The desired phase does not form below 580ºC, since the diffraction peaks are shifted to lower angles in the material treated at 570ºC when compared to JDPDS Card No. 85-0310. The source of silicon has strong influence on the product morphology: Na2SiO3 yields single-phase CdSiO3 in needle-shaped nanostructures, while high surface area mesostructured SiO2 yields coralloid-shaped particles. Low angle X-ray diffractometry reveals that the mesostructured nature of the silica precursor is not maintained in the resulting CdSiO3. Scanning electron microscopy suggests that in this case a transition occurs between the spherical morphology of the precursor and the needle-shape morphology of the material prepared from Na2SiO3. The surface area of the silica precursor has a strong influence in the reaction, since the use of commercial silica with a lower surface area does not yield the desired product.
Resumo:
A simple and fast capillary zone electrophoresis (CZE) method has been developed and validated for quantification of a non-nucleoside reverse transcriptase inhibitor (NNRTI) nevirapine, in pharmaceuticals. The analysis was optimized using 10 mmol L-1 sodium phosphate buffer pH 2.5, +25 kV applied voltage, hydrodynamic injection 0.5 psi for 5 s and direct UV detection at 200 µm. Diazepam (50.0 µg mL-1) was used as internal standard. Under these conditions, nevirapine was analyzed in approximately less than 2.5 min. The analytical curve presented a coefficient of correlation of 0.9994. Limits of detection and quantification were 1.4 µg mL-1 and 4.3 µg mL-1, respectively. Intra- and inter-day precision expressed as relative standard deviations were 1.4% and 1.3%, respectively and the mean recovery was 100.81%. The active pharmaceutical ingredient was subjected to hydrolysis (acid, basic and neutral) and oxidative stress conditions. No interference of degradation products and tablet excipients were observed. This method showed to be rapid, simple, precise, accurate and economical for determination of nevirapine in pharmaceuticals and it is suitable for routine quality control analysis since CE offers benefits in terms of quicker method development and significantly reduced operating costs.
Resumo:
This paper describes a sequential injection chromatography procedure for determination of picloram in waters exploring the low backpressure of a 2.5 cm long monolithic C18 column. Separation of the analyte from the matrix was achieved in less than 60 s using a mobile phase composed by 20:80 (v v-1) acetonitrile:5.0 mmol L-1 H3PO4 and flow rate of 30 μL s-1. Detection was made at 223 nm with a 40 mm optical path length cell. The limits of detection and quantification were 33 and 137 μg L-1, respectively. The proposed method is sensitive enough to monitor the maximum concentration level for picloram in drinking water (500 μg L-1). The sampling frequency is 60 analyses per hour, consuming only 300 μL of acetonitrile per analysis. The proposed methodology was applied to spiked river water samples and no statistically significant differences were observed in comparison to a conventional HPLC-UV method.
Resumo:
Foi estudado o comportamento eletroquímico a 37°C do aço inoxidável ISO 5832-9, em meios de NaCl 0,9 %, de Ringer Lactato e meio mínimo de Eagle (MEM), por voltametria linear e análises da superfície por microscopia eletrônica de varredura (MEV) e por espectroscopia por dispersão de energia (EDS). Foram feitos ensaios mecânicos e testes de toxicidade. O aço ISO 5832-9 se encontra passivado no potencial de corrosão e não apresenta corrosão por pite nos três meios estudados em toda faixa de potencial investigada, desde o potencial de corrosão até 50 mV acima do potencial de transpassivação. Em meio de MEM, no entanto, as análises por MEV e EDS mostraram que o referido aço, nesse valor mais elevado de potencial, apresentou um comportamento diferente, com perda das inclusões de óxido de manganês. Os potenciais de corrosão, Ecorr (potencial de circuito aberto estacionário) bem como os valores de densidade de corrente de passivação, variaram na seguinte ordem: Ecorr, RL < Ecorr, NaCl < Ecorr, MEM. e jMEM << jRL ≅ jNaCl. No ensaio de citotoxicidade, o aço foi caracterizado como não-tóxico.
Resumo:
The DNA damage induced by S(IV) in the presence of some Cu(II) complexes in air saturated solution was investigated. The addition of S(IV) to an air saturated solution containing CuII GGA (GGA = glycylglycyl-L-alanine), CuII G3 (G3 = triglycine) or CuII G4 (G4 = tetraglycine) and Ni(II) traces, causes rapid formation of the respective Cu(III) complex, with simultaneous O2 uptake and S(IV) oxidation. SO3•- and HO• were detected by EPR-spin trapping experiments. The DNA strand breaks were attributed to the oxysulfur radicals formed. In the reduction of Cu(II)/BCA (BCA = 4,4' dicarboxy-2-2'-biquinoline) by S(IV), with CuI BCA complex formation, there is the possible formation of carbon centered radical of BCA or peroxyl radical (ROO•) capable of oxidizing DNA bases. The intensity of DNA damage in the presence of these Cu(II) complexes and S(IV) (10-300 µmol L-1) followed the order: CuII BCA ∼ CuII G4 ∼ Cu(II) (added as Cu(NO3)2) > CuII G3 ∼ CuII GGA. Specifically for CuII BCA the damage occurred even at lower S(IV) concentration (0.1 µmol L-1). For the Cu(II) complexes with glycylglycylhistidine, glycylhistidylglycine, glycylhistidyllysine and glycylglycyltyrosylarginine the Cu(III) formation and the DNA damage was not observed.
Resumo:
A new tetraruthenated copper(II)-tetra(3,4-pyridyl)porphyrazine species, [CuTRPyPz]4+, has been synthesized and fully characterized by means of analytical, spectroscopic and electrochemical techniques. This À-conjugated system contrasts with the related meso-tetrapyridylporphyrins by exhibiting strong electronic interaction between the coordinated peripheral complexes and the central ring. Based on favorable À-stacking and electrostatic interactions, layer-by-layer assembled films were successfully generated from the appropriate combination of [CuTRPyPz]4+ with copper(II)-tetrasulfonated phtalocyanine, [CuTSPc]4-. Their conducting and electrocatalytic properties were investigated by means of impedance spectroscopy and rotating disc voltammetry, exhibiting metallic behavior near the Ru(III/II) redox potential, as well as enhanced catalytic activity for the oxidation of nitrite and sulphite ions.