299 resultados para Acid Red 29
Resumo:
Le taux de triacylglycerol (TAG) qui s`accumule dans le tissu adipeux depend de 2 mecanismes opposes : la lipogenese et la lipolyse. Nous avons montre anterieurement que le poids des lipides du tissu adipeux de l`epididyme (EPI) de meme que leur taux augmentent chez les rats en croissance soumis a une diete hypoproteique hyperglucidique (HPHG) pendant 15 jours. La presente etude a eu pour but d`examiner les voies impliquees dans la lipogenese et la lipolyse qui regulent l`accumulation des lipides dans le tissu. On a evalue in vivo la synthese de novo des acides gras, qui s`est revelee similaire chez les rats soumis a la diete HPHG ou a une diete temoin; toutefois, chez les rats soumis a la diete HPHG, une diminution de l`activite de la lipoproteine lipase dans le tissus adipeux de l`EPI a ete observee, ce qui laisse croire a une diminution de la capture des acides gras des lipoproteines circulantes. La diete HPHG n`a eu aucun effet sur la synthese du glycerol-3-phosphate (G3P) par la glycolyse ou la glyceroneogenese. L`activite de la glycerokinase, c.-a-d. la phosphorylation du glycerol issu de l`hydrolyse du TAG endogene pour former le GP3, n`a pas ete modifiee non plus par la diete HPHG. A l`oppose, les adipocytes des rats HPHG stimules par la norepinephrine ont eu une plus faible reponse lipolytique, meme si le taux lipolytique basal des adipocytes a ete similaire chez les 2 groupes. Ainsi, les resultats donnent a penser que la diminution de l`activite lipolytique stimulee par la norepinephrine joue un role essentiel dans l`augmentation du TAG observee dans le tissu adipeux de l`EPI des animaux HPHG, probablement en perturbant le processus d`activation de la lipolyse.
Resumo:
The cellular uptake and antimycobacterial activity of usnic acid (UA) and usnic acid-loaded liposomes (UA-LIPOs) were assessed on J774 macrophages. The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of UA and UA-LIPO against Mycobacterium tuberculosis were determined. Concentrations required to inhibit 50% of cell proliferation (IC(50)) were 22.5 (+/- 0.60) and 12.5 (+/- 0.26) mu g/ml, for UA and UA-LIPO, respectively. The MICs of UA and UA-LIPO were 6.5 and 5.8 mu g/mL, respectively. The MBC of UA-LIPO was twice as low (16 mu g/mL) as that of UA (32 mu g/mL). An improvement in the intracellular uptake of UA-LIPO was found (21.6 x 10(4) +/- 28.3 x 10(2) c.p.s), in comparison with UA (9.5 x 10(4) +/- 11.4 x 10(2) c.p.s). In addition, UA-LIPO remains much longer inside macrophages (30 hours). All data obtained from the encapsulation of usnic acid into liposomes as a drug delivery system (DDS) indicate a strong interaction between UA-liposomes and J774 macrophages, thereby facilitating UA penetration into cells. Considering such a process as ruling the Mycobacterium-transfection by magrophages, we could state that associating UA with this DDS leads to an improvement in its antimycobacterial activity.
Resumo:
In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-(14)C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-(14)C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.
Resumo:
Introduction Maternal folic acid deficiency is the most important metabolic factor in the etiology of neural tube defects (NTD) and is reduced by ethanol, which is extensively consumed by young women. Objective The objective of the study was to determine whether folic acid supplementation in dietary saccharose is efficient in the prevention NTD induced by ethanol in fetuses of Swiss mice. Materials and methods Pregnant mice were divided into four groups of six animals each: control (C), ethanol (E), deficient-supplemented (DS), and deficient-supplemented+ethanol (DSE). Groups C and E received commercial mouse chow (containing 3 mg/kg folic acid) throughout the experiment, while groups DS and DSE received a folic acid-free diet with the addition of saccharose supplemented with folic acid (2 mg/kg folic acid) in water. Group E and DSE animals received ethanol (4 g/kg) administered intraperitoneally from the seventh to the ninth gestational day (gd) and were euthanized on the 18th gd, while groups C and DS received saline. Results Congenital anomalies were observed in groups E and DSE. The fetal weight and length of the animals in group E were lower than in groups C and DS and, in group DSE, were lower than in groups C and DS. The placental diameter of group E was smaller than that of group C, and the placental weight of group C animals was lower than that of groups E, DSE, and DS. Conclusion The study demonstrated that dietary supplementation with folate in saccharose is an accessible means of consumption that could be further diffused but in an increased dose than recommended to reduce the teratogenic effects of ethanol.
Resumo:
Folic acid (FA) supplementation during carcinogenesis is controversial. Considering the impact of liver cancer as a public health problem and mandatory FA fortification in several countries, the role of FA supplementation in hepatocarcinogenesis should be elucidated. We evaluated FA supplementation during early hepatocarcinogenesis. Rats received daily 0.08 mg (FA8 group) or 0.16 mg (FA16 group) of FA/100 g body weight or water (CO group, controls). After a 2-week treatment, animals were subjected to the ""resistant hepatocyte"" model of hepatocarcinogenesis (initiation with diethylnitrosamine, selection/promotion with 2-acetylaminofluorene and partial hepatectomy) and euthanized after 8 weeks of treatment. Compared to the CO group, the FA16 group presented: reduced (p < 0.05) number of persistent and increased (p < 0.05) number of remodeling glutathione S-transferase (GST-P) positive preneoplastic lesions (PNL); reduced (p < 0.05) cell proliferation in persistent GST-P positive PNL; decreased (p < 0.05) hepatic DNA damage; and a tendency (p < 0.10) for decreased c-myc expression in microdissected PNL. Regarding all these parameters, no differences (p > 0.05) were observed between CO and FA8 groups. FA-treated groups presented increased hepatic levels of S-adenosylmethionine but only FA16 group presented increased S-adenosylmethionine/S-adenosylhomocysteine ratio. No differences (p > 0.05) were observed between experimental groups regarding apoptosis in persistent and remodeling GST-P positive PNL, and global DNA methylation pattern in microdissected PNL. Altogether, the FA16 group, but not the FA8 group, presented chemopreventive activity. Reversion of PNL phenotype and inhibition of DNA damage and of c-myc expression represent relevant FA cellular and molecular effects.
Resumo:
It has been demonstrated that glutamine, a conditionally essential amino acid, improves nitrogen balance, acts as a stimulant of protein synthesis, and decreases proteolysis in myopathic children. In contrast, other studies have shown no beneficial effect of glutamine supplementation on burn victims or critically ill patients. Nonetheless, we hypothesized that glutamine supplementation would increase the fractional protein synthesis rate (FSR) in the jejunal mucosa of malnourished male Wistar rats. Thus, the objective of the present study was to test the effect of daily oral glutamine supplementation (0.42 g kg(-1) d(-1) for 14 days) on the FSR of the jejunal mucosa of healthy and malnourished rats. A 4-hour kinetic study with L-[1-(13)C]leucine was subsequently performed, and jejunal biopsies were obtained 1.5 cm from the Treitz angle and analyzed. Malnourished rats showed a 25% weight loss and increased urinary nitrogen excretion. Plasma amino acid concentration did not differ between groups. (13)C enrichment in plasma and jejunal cells was higher in the malnourished groups than in the healthy group. The FSR (percent per hour) was similar for the control and experimental groups (P > .05), with a mean range of 220%/h to 27%/h. Oral glutamine supplementation alone did not induce higher protein incorporation by the jejunal mucosa in malnourished rats, regardless of total food intake or the presence or absence of glutamine supplementation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We analyzed the effect of (+)alpha-tocopheryl succinate (alpha-TOS) alone or associated with arsenic trioxide (ATO) or all-trans retinoid acid (ATRA) in acute promyelocytic leukemia (APL). alpha-TOS-induced apoptosis in APL clinical samples and in ATRA-sensitive (NB4) and ATRA-resistant (NB4-R2) APL cell lines. The effective dose 50% (ED-50) was calculated to be 71 and 58 mu M, for NB4 and NB4-R2, respectively. a-TOS neither induced nor modified ATRA-induced differentiation of APL cells, and did not affect the proliferation and differentiation of normal CD34(+) hematopoietic progenitors in methylcellulose assays. alpha-TOS exerted a moderate antagonistic effect to ATO-induced apoptosis when treatment was done simultaneously but when alpha-TOS was added 24 h after ATO, an additive effect was observed. Our results support the concept of alpha-TOS as an anti-leukemic compound which spares normal hematopoiesis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background/Aims: Transmethylation reactions and antioxidant metabolism are linked by transsulfuration, where homocysteine (Hcy) is converted to cysteine and reduced glutathione (GSH). Low protein intake can modulate the balance of this metabolic reaction. The aim of the present investigation was to study the effect of a low-protein diet on Hcy metabolism by monitoring levels of the amino acids involved in these pathways, and relating these levels to GSH levels and lipid peroxidation in rats. Methods: Sixteen rats were divided into 2 groups: control (C; standard AIN-93 diet, 20% protein) and low-protein diet (LPD; 8% protein diet). Rats in both groups were placed on the diets for 28 days. Results: A significant reduction (p < 0.05) in plasma Hcy concentration was found in LPD rats (0.16 +/- 0.04 mu mol/mg protein) versus C rats (0.25 +/- 0.03 mu mol/mg protein). Methionine levels were not significantly different between the 2 groups (C: 1.24 +/- 0.22 mu mol/mg protein; LPD: 1.03 +/- 0.27 mu mol/mg protein). A significant reduction (p ! 0.05) in hepatic GSH concentrations (C: 44 8 10 mu mol/mg protein; LPD: 17.4 +/- 4.3 mu mol/mg protein) was accompanied by an increase in lipid peroxidation (C: 0.13 +/- 0.01 mu mol/mg protein; LPD: 0.17 +/- 0.02 mu mol/mg protein; r = -0.62, p < 0.01). Conclusion: Hcy levels were reduced under a low-protein diet, resulting in modulated methyl balance and reduced GSH formation leading to increased susceptibility of hepatic cells to oxidative events. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Among the possible mechanisms explaining the worsening of asthma due to gastroesophageal reflux disease (GERD) is the increase in bronchial hyperresponsiveness. The effects of GERD on bronchial hyperresponsiveness in patients with bronchial asthma have yet to be studied in significant detail. The aim of this study was to determine the effects of esophageal acid perfusion on bronchial responsiveness to bradykinin in patients with both asthma and GERD. In 20 patients with asthma and GERD disease, esophageal pH was monitored with a pH meter and bronchial responsiveness was evaluated by aerosol inhalation of bradykinin during esophageal acid perfusion and, 24 h earlier or later the patients were submitted to another bronchial provocation test without acid infusion. No significant changes were observed in FEV1, FEF25-75%, FVC, or PEF during acid perfusion. The response to the bronchial provocation test did not differ between the control day and the day of acid infusion (p = 0.61). The concentration provoking a 20% fall in FEV1 (geometric mean +/- geometric SD) was 1.09 +/- 5.84 on the day of acid infusion and 0.98 +/- 5.52 on the control day. There is no evidence that acid infusion changes bronchial responsiveness to bradykinin. These findings strongly question the significance of acid infusion as a model to study the pathogenesis of GERD-induced asthma.
Resumo:
Indole-3-acetic acid (IAA), when oxidized by horseradish peroxidase (HRP), is transformed into cytotoxic molecules capable of inducing cell injury. The aim of this study was to test if, by targeting hematopoietic tumors with HRP-conjugated antibodies in association with IAA treatment, there is induction of apoptosis. We used two lineages of hematologic tumors: NB4, derived from acute promyelocytic leukemia (APL) and Granta-519 from mantle cell lymphoma (MCL). We also tested cells from 12 patients with acute myeloid leukemia (AML) and from 10 patients with chronic lymphocytic leukemia (CLL). HRP targeting was performed with anti-CD33 or anti-CD19 antibodies (depending on the origin of the cell), followed by incubation with goat anti-mouse antibody conjugated with HRP. Eight experimental groups were analyzed: control, HRP targeted, HRP targeted and incubated with 1, 5 and 10 mM IAA, and cells not HRP targeted but incubated with 1, 5 and 10 mM IAA. Apoptosis was analyzed by flow cytometry using annexin V-FITC and propidium iodide labeling. Results showed that apoptosis was dependent on the dose of IAA utilized, the duration of exposure to the prodrug and the origin of the neoplasia. Targeting HRP with antibodies was efficient in activating IAA and inducing apoptosis. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Previous publications have documented the damage caused to red blood cells (RBCs) irradiated with X-rays produced by a linear accelerator and with gamma rays derived from a Cs-137 source. The biologic effects on RBCs of gamma rays from a Co-60 source, however, have not been characterized. STUDY DESIGN AND METHODS: This study investigated the effect of 3000 and 4000 cGy on the in vitro properties of RBCs preserved with preservative solution and irradiated with a cobalt teletherapy unit. A thermal device equipped with a data acquisition system was used to maintain and monitor the blood temperature during irradiation. The device was rotated at 2 r.p.m. in the irradiation beam by means of an automated system. The spatial distribution of the absorbed dose over the irradiated volume was obtained with phantom and thermoluminescent dosimeters (TLDs). Levels of Hb, K+, and Cl- were assessed by spectrophotometric techniques over a period of 45 days. The change in the topology of the RBC membrane was investigated by flow cytometry. RESULTS: Irradiation caused significant changes in the extracellular levels of K+ and Hb and in the organizational structure of the phospholipid bilayer of the RBC membrane. Blood temperature ranged from 2 to 4 degrees C during irradiation. Rotation at 2 r.p.m. distributed the dose homogeneously (92%-104%) and did not damage the RBCs. CONCLUSIONS: The method used to store the blood bags during irradiation guaranteed that all damage caused to the cells was exclusively due to the action of radiation at the doses applied. It was demonstrated that prolonged storage of Co-60-irradiated RBCs results in loss of membrane phospholipids asymmetry, exposing phosphatidylserine (PS) on the cells` surface with a time and dose dependence, which can reduce the in vivo recovery of these cells. A time- and dose-dependence effect on the extracellular K+ and plasma-free Hb levels was also observed. The magnitude of all these effects, however, seems not to be clinically important and can support the storage of irradiated RBC units for at last 28 days.
Resumo:
The aim of this study was to describe the status of oxidative stress and antioxidant biomarkers and their association with metabolic and body composition components of HIV-lipodystrophy syndrome. In a cross-sectional study of blood samples from HIV-infected men with lipodystrophy syndrome (HIV+LIPO+ = 10), HIV-infected men without lipodystrophy syndrome (HIV+LIPO- = 22), and healthy subjects (control = 12), the following oxidative stress biomarkers were analyzed: total hydroperoxide, thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP). In addition, antioxidant biomarkers, including total glutathione, uric acid, alpha-tocopherol, and metabolic components were tested. Dual-energy x-ray absorciometry (DXA) was used to measure the fat mass. The duration of HIV infection and the duration and type of highly active antiretroviral therapy were similar between the two HIV-infected groups. Higher levels of total hydroperoxide were observed in the HIV+LIPO+ (50 +/- 33 H(2)O(2)/L) group compared to the HIV+LIPO-(19 +/- 13 H(2)O(2)/L) and control (5 +/- 5 H(2)O(2)/L) groups (p < 0.05). Similarly, higher levels of AOPP were observed in the HIV+LIPO+ (326 +/- 173 mu mol/L) group compared to the HIV+LIPO- (105 +/- 92 mu mol/L) and control groups (80 +/- 20 mu mol/L) (p < 0.05). Total hydroperoxide significantly correlated with insulin serum levels in the HIV+LIPO+ (r = 0.47, p < 0.05) and HIV+LIPO- groups (r = 0.29, p < 0.05), while AOPP significantly correlated with insulin serum levels in the HIV+LIPO+ (r = 0.73, p < 0.05) and HIV+LIPO- (r = 0.54, p < 0.05) groups. Therefore, higher lipid and protein oxidation were found in HIV-infected patients with lipodystrophy syndrome, and both were associated with insulin levels.
Resumo:
Autoimmune hepatitis is an inflammatory chronic disease of the liver, which frequently results in cirrhosis. The present study aimed to verify the relationship between plasma cells and stellate cells in autoimmune hepatitis. Thirty-three pre-treatment, 11 post-treatment, and 10 normal liver biopsies were reviewed. Sirius Red staining (for semi-quantitative analysis of hepatic fibrosis) and immunohistochemistry were carried out: double staining for smooth muscle alpha-actin and plasma cell marker (for detection and localization of activated hepatic stellate cells and plasma cells, respectively); and single staining for glial fibrillary acid protein (for detection of hepatic stellate cells). We found an increase in the stellate cell population, mainly with an activated phenotype in autoimmune hepatitis, compared to the control group (liver specimens with no histological evidence of liver disease, obtained from patients undergoing hepatic resection for benign liver mass). A positive significant correlation was observed between stellate cells and scores of fibrosis (measured by Sirius Red) and the number of plasma cells. Additionally, there was a co-localization of plasma cells and activated stellate cells. We also observed a reduction in the number of plasma cells, hepatic stellate cells, and fibrosis in patients who had successfully been treated and had a second liver biopsy post-treatment. Our findings support that the number of plasma cells can be a surrogate marker for the severity of liver disease, reflecting the number of hepatic stellate cells and the amount of fibrosis. It remains to be seen if this is a result of a direct interaction between the plasma cells and hepatic stellate cells or the response to the same stimulus that affects both cellular types. (c) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit anti-inflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Capsicum baccatum L. var. pendulum (Willd.) Eshbaugh (Solanaceae) is the most consumed species in Brazil, and its compounds, such as capsaicinoids, have been found to inhibit the inflammatory process. However, the anti-inflammatory effects of C. baccatum have not been characterized. Thus, this study was designed to evaluate the effects of C. baccatum juice in animal models of acute inflammation induced by carrageenan and immune inflammation induced by methylated bovine serum albumin. Pretreatment (30 min) of rats with pepper juice (0.25-2.0 g kg(-1)) significantly decreased leucocyte and neutrophil migration, exudate volume and protein and LDH concentration in pleural exudates of a pleurisy model. This juice also inhibited neutrophil migration and reduced the vascular permeability on carrageenan-induced peritonitis in mice. C. baccatum juice also reduced neutrophil recruitment and exudate levels of pro-inflammatory cytokines TNF-alpha, and IL-1 beta in mouse inflammatory immune peritonitis. Furthermore, we demonstrated that the main constituent of C. baccatum juice, as extracted with chloroform, is capsaicin. In agreement with this, capsaicin was able to inhibit the neutrophil migration towards the inflammatory focus. To our knowledge, this is the first demonstration of the anti-inflammatory effect of C. baccatum juice and our data suggest that this effect may be induced by capsaicin. Moreover, the anti-inflammatory effect induced by red pepper may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.
Resumo:
The current therapy of acute pulmonary embolism is focused on removing the mechanical obstruction of the pulmonary vessels. However, accumulating evidence suggests that pulmonary vasoconstriction drives many of the hemodynamic changes found in this condition. We examined the effects of stimulation of soluble guanylate cyclase with BAY 41-2272 (5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine) in an anesthetized dog model of acute pulmonary embolism. Hemodynamic and arterial blood gas evaluations were performed in non-embolized dogs treated with vehicle (N = 5), and in embolized dogs (intravenous injections of microspheres) that received BAY 41-2272 intravenously in doses of 0.03, 0.1, 0.3, and 1 mg/kg/h or vehicle (1 ml/kg/h of 1.13% ethanol in saline, volume/volume). Plasma cGMP and thiobarbituric acid reactive substances concentrations were determined using a commercial enzyme immunoassay and a fluorometric method, respectively. The infusion of BAY 41-2272 resulted in a decrease in pulmonary artery pressure by similar to 29%, and in pulmonary vascular resistance by similar to 46% of the respective increases induced by lung embolization (both P<0.05). While the higher doses of BAY 41-2272 produced no additional effects on the pulmonary circulation, they caused significant arterial hypotension and reduction in systemic vascular resistance (both P<0.05). Although BAY 41-2272 increased cGMP concentrations (P<0.05), it did not affect the hypoxemia and the increased oxidative stress caused by lung embolization. These results suggest that stimulation of soluble guanylate cyclase with low (but not high) doses of BAY 41-2272 produces selective pulmonary vasodilation during acute pulmonary embolism. The dose-dependent systemic effects produced by BAY 41-2272, however, may limit its usefulness in larger doses. (C) 2007 Elsevier B.V. All rights reserved.