241 resultados para Triplicated alpha-globin genes
Resumo:
Neospora caninum is one of the main causes of abortion and natimortality in cattle. Host immune defense is capable to inhibit tachyzoite activity during acute infection, but there is no action against bradyzoites in tissue cysts. Activation and modulation of this response is controlled by cell mediators. The real-time RT-PCR technique was employed to detect some of those mediators during N. caninum infection. Holstein and Nelore calves intramuscularly infected with tachyzoites and uninfected controls were slaughtered at the sixth day post-infection and popliteal lymph node, liver and brain cortex samples were analyzed. Real-time RT-PCR detected gene expression in all tissues. No significant variation of GAPDH gene expression was detected among groups, its amplification efficiency was similar to the other genes tested and it was used as the endogenous control for the analysis. Comparisons between infected and uninfected groups allowed the relative gene expression quantification. IFN-gamma and TNF-alpha genes showed increased expression in some samples. iNOS and TGF-beta 1 genes had some non-significant variations and IL-4 and IL-10 stayed pratically inaltered.
Resumo:
Insectivorous bats are the main reservoirs of rabies virus (RABV) in various regions of the world. The aims of this study were to (a) establish genealogies for RABV strains from different species of Brazilian insectivorous bats based on the nucleoprotein (N) and glycoprotein (G) genes, (b) investigate specific RABV lineages associated with certain genera of bats and (c) identify molecular markers that can distinguish between these lineages. The genealogic analysis of N and G from 57 RABV strains revealed seven genus-specific clusters related to the insectivorous bats Myotis, Eptesicus, Nyctinomops, Molossus, Tadarida, Histiotus and Lasiurus. Molecular markers in the amino acid sequences were identified which were specific to the seven clusters. These results, which constitute a novel finding for this pathogen, show that there are at least seven independent epidemiological rabies cycles maintained by seven genera of insectivorous bats in Brazil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The periaqueductal gray (PAG) has been reported as a potential site for opioid regulation of behavioral selection. Opioid-mediated behavioral and physiological responses differ between nulliparous and multiparous females. This study addresses the effects of multiple reproductive experiences on mu-, kappa- and delta-opioid receptor (Oprm1, Oprk1, and Oprd1 respectively) gene activity and mu, kappa and delta protein expression (MOR, KOR and DOR respectively) in the PAG of the female rats. This was done by evaluating the opioid gene expression using real-time (RT-PCR) and quantification of each protein receptor by Western blot analysis. The RT-PCR results show that multiple reproductive experiences increase Oprm1 and Oprk1 gene expression. Western blot analysis revealed increased MOR and KOR while DOR protein was decreased in multiparous animals. Taken together, these data suggest that multiple reproductive experiences influence both gene activity and opioid receptor expression in the PAG. Post-translational mechanisms seem particularly relevant for DOR expression. Thus, opioid transmission in the PAG might be modulated by different mechanisms of multiparity-induced plasticity according to the opioid receptor type.
Resumo:
The study evaluated, in early post-partum anoestrous Nelore cows, if the increase in plasma oestradiol (E2) concentrations in the pre-ovulatory period and/or progesterone priming (P4 priming) preceding ovulation, induced by hormonal treatment, reduces the endogenous release of prostaglandin PGF(2)alpha and prevents premature lysis of the corpus luteum (CL). Nelore cows were subjected to temporary calf removal for 48 h and divided into two groups: GPE/eCG group (n = 10) and GPG/eCG group (n = 10). Animals of the GPE/eCG group were treated with a GnRH agonist. Seven days later, they received 400 ID of eCG, immediately after PGF(2)alpha treatment, and on day 0, 1.0 mg of oestradiol benzoate (EB). Cows of the GPG/eCG group were similarly treated as those of the GPE/eCG group, except that EB was replaced with a second dose of GnRH. All animals were challenged with oxytocin (OT) 9, 12, 15 and 18 days after EB or GnRH administration and blood samples were collected before and 30 min after OT. Irrespective of the treatments, a decline in P4 concentration on day 18 was observed for cows without P4 priming. However, animals exposed to P4 priming, treated with EB maintained high P4 concentrations (8.8 +/- 1.2 ng/ml), whereas there was a decline in P4 on day 18 (2.1 +/- 1.0 ng/ml) for cows that received GnRH to induce ovulation (p < 0.01). Production of 13,14-dihydro-15-keto prostaglandin F(2)alpha (PGFM) in response to OT increased between days 9 and 18 (p < 0.01), and this increase tended to be more evident in animals not exposed to P4 priming (p < 0.06). In conclusion, the increase in E2 during the pre-ovulatory period was not effective in inhibiting PGFM release, which was lower in P4-primed than in non-primed animals. Treatment with EB promoted the maintenance of elevated P4 concentrations 18 days after ovulation in P4-primed animals, indicating a possible beneficial effect of hormone protocols containing EB in animals with P4 priming.
Resumo:
The objective was to evaluate the influence of varying plasma progesterone (P(4)) concentrations throughout the luteal phase in dairy cows on PGF(2 alpha) production (assessed as plasma concentrations of 13,14-dihydro-15-keto-PGF(2 alpha); PGFM) following treatment with estradiol-17 beta (E(2)) or oxytocin (OT). In all experiments, time of ovulations was synchronized with the OvSynch protocol and Day 0 corresponded to day of second GnRH injection. In Experiment 1, non-lactating dairy cows on Day 6 remained non-treated (n = 9), received 20 mg LH (n = 7), or had ovarian follicles larger than 6 mm aspirated (n = 8). In Experiment 2, cows on Day 6 were untreated (n = 9) or received 5000 IU hCG (n = 10). In Experiments 1 and 2, all cows received 3 mg E(2) on Day 17, and blood samples were collected every 30 min from 2h before to 10h after E(2). Experiment 3 was conducted in two periods, each from Days 0 to 17 of the estrous cycle. At the end of Period 1, animals switched treatments in a crossover arrangement. Animals in Group 2/8 (n = 4) received 2 kg/d of concentrate in the first period and 8 kg/d in the second period. Animals in Group 8/2 (n = 7) received the alternate sequence. Blood was collected daily for measurement Of P(4) 4 h after concentrate feeding. On Day 17, blood was collected from 1 h before to 1 h after a 100 IU OT injection. In Experiment 1, both plasma P(4) and release Of PGF(2 alpha) were similar between LH-treated and control cows (P > 0.10). In Experiment 2, plasma P4 was elevated to a greater extent on Day 17 in cows treated with hCG (P < 0.05) and plasma PGFM was also greater in hCG-treated animals (treatment x time interaction; P < 0.05). In Experiment 3, there was a group x period interaction (P < 0.01) for plasma P(4), indicating that less concentrate feeding was associated with greater plasma P(4). Release of PGF(2 alpha) in response to OT was greater for cows receiving less concentrate (group x period interaction; P < 0.05). In conclusion, dairy cows with more elevated blood P(4) concentrations released more PGF(2 alpha) in response to E(2) or OT. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The alpha-lactalbumin is a subunit of lactose-synthase, an enzyme responsible for lactose production, a disaccharide that influences milk production. Sequence variations of bovine alpha-lactalbumin have been associated with differences in milk yield. This study aimed to analyze allelic frequency differences at position-1689 (g. AG) and+15 (g. AG) of the alpha-lactalbumin gene in Holstein (Bos taurus) and Nellore (Bos indicus) cows. Blood samples were analyzed from 34 Holstein, 104 Nellore, and 99 Dairy Nellore cows using PCR-RFLP. The different RFLP patterns were sequenced and a novel sequence variation on nucleotide-46 was identified. An adenine at this position was designated as the A allele and a guanine was designated B allele. The frequencies of alleles A-1689, A-46, and A+15 differed between Holstein and both Nellore breeds. The results show that differences in alpha-lactalbumin allelic variants in the 5`-flanking and the 5`-UTR region might be associated with differences in milk production between Holstein cows and cows from Nellore breeds. However, the lack of difference between Nellore and Dairy Nellore suggests that other sequence variantions that regulate milk production might be responsible for the selection of Dairy Nellore cows with superior milk production.
Resumo:
Ethanol stimulates the production of prostaglandins in many species. The purpose of this study was to verify the effect of ethanol on the production of prostaglandin F2 alpha (PGF2 alpha) and luteolysis in bovine females. In the first experiment, Holstein cows at day 17 of the oestrous cycle were treated with 100% ethanol (0.05 ml/kg of body weight, IV; n = 5), saline (0.05 ml/kg of body weight, IV; n = 4) or synthetic prostaglandin (150 mu g of D-cloprostenol/cow, IM; n = 4). The plasma concentrations of 13, 14-dihydro-15-keto PGF2 alpha (PGFM; the main metabolite of PGF2 alpha measured in the peripheral blood) were assessed by radioimmunoassay (RIA). There was an acute release of PGFM in response to ethanol comparing to other treatments (p <= 0.05). However, only cows treated with PGF2 alpha underwent luteolysis. In the second experiment, endometrial explants of cross-bred beef cows (n = 4) slaughtered at day 17 of the oestrous cycle were cultured for 4 h. During the last 3 h, the explants were cultured with medium supplemented with 0, 0.1, I, 10 or 100 mu l of 100% ethanol/ml. Medium samples were collected at hours 1 and 4 and concentrations of PGF2 alpha were measured by RIA. Ethanol did not induce PGF2 alpha production by the endometrium. In conclusion, ethanol does not cause luteolysis in cows because it stimulates production of PGF2 alpha in extra-endometrial tissues.
Resumo:
Oral squamous cell carcinoma (OSCC) may arise from potentially malignant oral lesions. All-trans retinoic acid (atRA), which plays a role in cell growth and differentiation, has been studied as a possible chemotherapeutic agent in the prevention of this progression. While the mechanism by which atRA suppresses cell growth has not been completely elucidated, it is known that homeobox genes are atRA targets. To determine if these genes are involved in the atRA-mediated OSCC growth inhibition, PCR array was performed to evaluate the expression of 84 homeobox genes in atRA-sensitive SCC-25 cells compared to atRA-resistant SCC-9 cells following 7 days with atRA treatment. Results showed that the expression of 8 homeobox genes was downregulated and expression of 4 was upregulated in SCC-25 cells but not in SCC-9 cells. Gene expression levels were confirmed for seven of these genes by RT-qPCR. Expression of three genes that showed threefold downregulation was evaluated in SCC-25 cells treated with atRA for 3, 5, and 7 days. Three different patterns of atRA-dependent gene expression were observed. ALX1 showed downregulation only on day 7. DLX3 showed reduced expression on day 3 and further reduced on clay 7. TLX1 showed downregulation only on days 5 and 7. Clearly the expression of homeobox genes is modulated by atRA in OSCC cell lines. However, the time course of this modulation suggests that these genes are not direct targets of atRA mediating OSCC growth suppression. Instead they appear to act as downstream effectors of atRA signaling. J. Cell. Biochem. 111: 1437-1444, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The burning mouth syndrome (BMS) is a chronic condition characterized by oral burning pain in the absence of clinical abnormalities and without established therapy. The purpose of this study was to evaluate the effectiveness of alpha lipoic acid (ALA) in the management of BMS symptoms through a randomized double-blind placebo-controlled trial. Thirty-eight patients (34 women and four men, median age 62.9 years, range 36-78) were included and 31 completed the study. The patients were randomized into two cycles of treatment: one with alpha lipoic acid and one with placebo both administered in identical capsules. These cycles were separated by a washout period of 20 days. The oral symptoms and the treatment response were assessed using a 100-mm visual analog scale before and after each cycle and the global perceived effect score, using a 5-point scale after each treatment cycle. The level of reduction on burning was significant for both treatments (paired t-test: P < 0.05; rp = 0.011; ral < 0.001). Considering the two cycles together, 22 patients reported at least some improvement after ALA use and 23 patients after placebo. Comparison of the oral assessment scores of the two cycles failed to demonstrate the effectiveness of ALA over placebo (t-test: P > 0.05; r = 0.75).
Resumo:
Periodontal diseases are infectious diseases, in which periodontopathogens trigger chronic inflammatory and immune responses that lead to tissue destruction. It occurs through the generation of metalloproteinases and the activation of bone resorption mechanisms. Anti-inflammatory cytokines such as IL-10 seem to attenuate periodontal tissue destruction through the induction of tissue inhibitors of metalloproteinases (TIMPs) and the inhibitor of osteoclastogenesis osteoprotegerin (OPG). A high individual variation in levels of IL-10 mRNA is verified in periodontitis patients, which is possibly determined by genetic polymorphisms. In this study, the IL-10 promoter -592C/A single nucleotide polymorphism ( SNP), which is associated with a decrease in IL-10 production, was analyzed by RFLP in 116 chronic periodontitis (CP) patients and 173 control (C) subjects, and the IL-10, TIMPs, and OPG mRNA expression levels in diseased gingival tissues were determined by real-time-PCR. The IL-10-592 SNP CA (P=0.0012/OR=2.4/CI:1.4-4.1), AA (P=0.0458/OR=2.3/CI:1.1-4.9), and CA+AA (P=0.0006/OR=2.4/CI: 1.4-3.4) genotypes and the allele A (P=0.0036/OR=1.7/CI:1.2-2.4) were found to be significantly more prevalent in the CP group when compared with control subjects. Both CA and AA genotypes were associated with lower levels of IL-10, TIMP-3, and OPG mRNA expression in diseased periodontal tissues and were also associated with disease severity as mean pocket depth. Taken together, the results presented here demonstrate that IL10-592 SNP is functional in CP, being associated with lower levels of IL-10 mRNA expression, which is supposed to consequently decrease the expression of the downstream genes TIMP-3 and OPG, and influence periodontal disease outcome. J. Leukoc. Biol. 84: 1565-1573; 2008.
Resumo:
Oral squamous cell carcinoma (OSCC) accounts for more than 90% of the malignant neoplasms that arise in the mucosa of the upper aerodigestive tract. Recent studies of cleft lip/palate have shown the association of genes involved in cancer. WNT pathway genes have been associated with several types of cancer and recently with cleft lip/palate. To investigate if genes associated with cleft lip/palate were also associated with oral cancer, we genotyped 188 individuals with OSCC and 225 control individuals for markers in AXIN2, AXIN1, GSK3 beta, WNT3A, WNT5A, WNT8A, WNT11, WNT3, and WNT9B. Statistical analysis was performed with PLINK 1.06 software to test for differences in allele frequencies of each polymorphism between cases and controls. We found association of SNPs in GSK3B (p = 0.0008) and WNT11 (p = 0.03) with OSCC. We also found overtransmission of GSK3B haplotypes in OSCC cases. Expression analyses showed up-regulation of WNT3A, GSK3B, and AXIN1 and down-regulation of WNT11 in OSCC in comparison with control tissues (P < 0.001). Additional studies should focus on the identification of potentially functional variants in these genes as contributors to human clefting and oral cancer.
Resumo:
Background: Fibroblasts are considered important cells in periodontitis. When challenged by different agents, they respond through the release of cytokines that participate in the inflammatory process. The aim of this study is to evaluate and compare the expression and production of macrophage inflammatory protein (MIP)-1 alpha, stromal-derived factor (SDF)-1, and interleukin (IL)-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide (LPS) from Porphyromonas gingivalis. Methods: Fibroblasts were cultured from biopsies of gingival tissue and periodontal ligament of the same donors and used on the fourth passage. After confluence in 24-well plates, the culture medium alone (control) or with 0.1 to 10 mu g/ml of LPS from P. gingivalis was added to the wells, and after 1, 6, and 24 hours, the supernatant and the cells were collected and analyzed by enzyme-linked immunosorbent assay and real-time polymerase chain reaction, respectively. Results: MIP-1 alpha, SDF-1, and IL-6 protein production was significantly greater in gingival fibroblasts compared to periodontal ligament fibroblasts. IL-6 was upregulated in a time-dependent manner, mainly in gingival fibroblasts (P<0.05), which secreted more MIP-1 alpha in the lowest concentration of LPS used (0.1 mu g/ml). In contrast, a basal production of SDF-1 that was inhibited with the increase of LPS concentration was detected, especially after 24 hours (P<0.05). Conclusion: The distinct ability of the gingival and periodontal ligament fibroblasts to secrete MIP-1 alpha, SDF-1, and IL-6 emphasizes that these cells may differently contribute to the balance of cytokines in the LPS-challenged periodontium. J Periodontol 2010;81:310-317.
Resumo:
A secretory surge of prolactin occurs on the afternoon of oestrous in cycling rats. Although prolactin is regulated by ovarian steroids, plasma oestradiol and progesterone levels do not vary during oestrous. Because prolactin release is tonically inhibited by hypothalamic dopamine and modulated by dopamine transmission in the preoptic area (POA), the present study aimed to evaluate whether oestrogen receptor (ER)-alpha and progestin receptor (PR) expression in the dopaminergic neurones of arcuate (ARC), periventricular, anteroventral periventricular (AVPe) and ventromedial preoptic (VMPO) nuclei changes during the day of oestrous. Cycling rats were perfused every 2 h from 10-20 h on oestrous. Brain sections were double-labelled to ER alpha or PR and tyrosine hydroxylase (TH). The number of TH-immunoreactive (ir) neurones did not vary significantly in any area evaluated. ER alpha expression in TH-ir neurones increased at 14 and 16 h in the rostral-ARC and dorsomedial-ARC, 14 h in the caudal-ARC and 16 h in the VMPO, whereas it was unaltered in the ventrolateral-ARC, periventricular and AVPe. PR expression in TH-ir neurones of the periventricular and rostral, dorsomedial, ventrolateral and caudal-ARC decreased transitorily during the afternoon, showing the lowest levels between 14 and 16 h; but it did not vary in the AVPe and VMPO. Plasma oestradiol and progesterone concentrations were low and unaltered during oestrous, indicating that the changes in receptors expression were probably not due to variation in ligand levels. Thus, our data suggest that variations in ER alpha and PR expression may promote changes in the activity of medial basal hypothalamus and POA dopaminergic neurones, even under unaltered secretion of ovarian steroids, which could facilitate the occurrence and modulate the magnitude of the prolactin surge on oestrous.
Resumo:
Paracoccidioides brasiliensis is the etiologic agent of the Paracoccidioidomycosis the most common systemic mycosis in Latin America. Little is known about the regulation of genes involved in the innate immune host response to P. brasiliensis. We therefore examined the kinetic profile of gene expression of peritoneal macrophage infected with P. brasiliensis. Total RNA from macrophages at 6, 24 and 48 h was extracted, hybridized onto nylon membranes and analyzed. An increase in the transcription of a number of pro-inflammatory molecules encoding membrane proteins, metalloproteases, involved in adhesion and phagocytosis, are described. We observed also the differential expression of genes whose products may cause apoptotic events induced at 24 h. In addition, considering the simultaneous analyses of differential gene expression for the pathogen reported before by our group, at six hours post infection, we propose a model at molecular level for the P. brasiliensis-macrophage early interaction. In this regard, P. brasiliensis regulates genes specially related to stress and macrophages, at the same time point, up-regulate genes related to inflammation and phagocytosis, probably as an effort to counteract infection by the fungus. (c) 2007 Elsevier Masson SAS. All fights reserved.
Resumo:
Locus coeruleus (LC) is involved in the LHRH regulation by gonadal steroids. We investigated the expression of progesterone and estrogen receptors (PR; ER) in LC neurons of ER alpha (alpha ERKO) or ER beta (beta ERKO) knockout mice, and their wild-type (alpha WT and beta WT). Immunocytochemical studies showed that LC expresses PR and both ERs, although ER beta was more abundant. Estradiol benzoate (EB) decreased ER alpha-positive cells in WT and beta ERKO mice, and progesterone caused a further reduction, whereas none of the steroids influenced ER beta expression. ER beta deletion increased ER alpha while ER alpha deletion did not alter ER beta expression. In both WT mice, EB increased PR expression, which was diminished by progesterone. These steroid effects were also observed in alpha ERKO animals but to a lesser extent, suggesting that ER alpha is partially responsible for the estrogenic induction of PR in LC. Steroid effects on PR in beta ERKO mice were similar to those in the alpha ERKO but to a lesser extent, probably because PR expression was already high in the oil-treated group. This expression seems to be specific of LC neurons, since it was not observed in other areas studied, the preoptic area and ventromedial nucleus of hypothalamus. These findings show that LC in mice expresses alpha ER, beta ER, and PR, and that a balance between them may be critical for the physiological control of reproductive function.