293 resultados para Phase-stability
Resumo:
Dehydroepiandrosterone (DHEA) has long been considered as a precursor for many steroid hormones. It also enhances the immune responses against a wide range of viral, bacterial, and parasitic pathogens. The aims of this work were to evaluate the influences of exogenous DHEA treatment on Wistar rats infected with the Y strain of Trypanosoma cruzi during the acute and its influence on the chronic phase of infection. Animals were subcutaneous treated with 40 mg/kg body weight/day of DHEA. DHEA treatment promoted increased lymphoproliferative responses as well as enhanced concentrations of NO and IL-12. So, we point in the direction that our results validate the utility of the use of DHEA as an alternative therapy candidate against T cruzi. (C) 2009 Published by Elsevier B.V.
Resumo:
The present work deals with improving the production and stabilization of lipases from Cercospora kikuchii. Maximum enzyme production (9.384 U/ml) was obtained after 6 days in a medium supplemented with 2% soybean oil. The lipases were spray dried with different adjuvants, and their stability was studied. The residual enzyme activity after drying with 10% (w/v) of lactose, b- cyclodextrin, maltodextrin, mannitol, gum arabic, and trehalose ranged from 63 to 100%. The enzyme activity was lost in the absence of adjuvants. Most of the adjuvants used kept up at least 50% of the enzymatic activity at 5 degrees C and 40% at 25 degrees C after 8 months. The lipase dried with 10% of beta-cyclodextrin retained 72% of activity at 5 degrees C. Lipases were separated by butyl-sepharose column into 4 pools, and pool 4 was partially purified (33.1%; 269.5 U/mg protein). This pool was also spray dried in maltodextrin DE10, and it maintained 100% of activity.
Resumo:
This paper examines the compatibility of inflation targeting with an economy that is Post Keynesian in character. We show that in a Post Keynesian environment, policymakers can both set and achieve an inflation target without adverse consequences for the real economy, as long as an appropriate policy mix is chosen. The latitude that policymakers have in making this choice is investigated. One of our key results is that orthodox policy regimes do not provide appropriate policy mixes. Indeed, the more orthodox the policy regime becomes, the less viable is inflation targeting in a Post Keynesian economy.
Resumo:
Stability of matchings was proved to be a new cooperative equilibrium concept in Sotomayor (Dynamics and equilibrium: essays in honor to D. Gale, 1992). That paper introduces the innovation of treating as multi-dimensional the payoff of a player with a quota greater than one. This is done for the many-to-many matching model with additively separable utilities, for which the stability concept is defined. It is then proved, via linear programming, that the set of stable outcomes is nonempty and it may be strictly bigger than the set of dual solutions and strictly smaller than the core. The present paper defines a general concept of stability and shows that this concept is a natural solution concept, stronger than the core concept, for a much more general coalitional game than a matching game. Instead of mutual agreements inside partnerships, the players are allowed to make collective agreements inside coalitions of any size and to distribute his labor among them. A collective agreement determines the level of labor at which the coalition operates and the division, among its members, of the income generated by the coalition. An allocation specifies a set of collective agreements for each player.
Resumo:
In a decentralized setting the game-theoretical predictions are that only strong blockings are allowed to rupture the structure of a matching. This paper argues that, under indifferences, also weak blockings should be considered when these blockings come from the grand coalition. This solution concept requires stability plus Pareto optimality. A characterization of the set of Pareto-stable matchings for the roommate and the marriage models is provided in terms of individually rational matchings whose blocking pairs, if any, are formed with unmatched agents. These matchings always exist and give an economic intuition on how blocking can be done by non-trading agents, so that the transactions need not be undone as agents reach the set of stable matchings. Some properties of the Pareto-stable matchings shared by the Marriage and Roommate models are obtained.
Resumo:
A stable matching rule is used as the outcome function for the Admission game where colleges behave straightforwardly and the students` strategies are given by their preferences over the colleges. We show that the college-optimal stable matching rule implements the set of stable matchings via the Nash equilibrium (NE) concept. For any other stable matching rule the strategic behavior of the students may lead to outcomes that are not stable under the true preferences. We then introduce uncertainty about the matching selected and prove that the natural solution concept is that of NE in the strong sense. A general result shows that the random stable matching rule, as well as any stable matching rule, implements the set of stable matchings via NE in the strong sense. Precise answers are given to the strategic questions raised.
Resumo:
Poly(pyrrole) (PPY) coating was prepared on a stainless-steel (SS) wire for solid-phase microextraction (SPME) by electrochemical deposition (cyclic voltammetric). The PPY was evaluated by analyzing new-generation antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine, and sertraline) in plasma sample by SPME and liquid chromatography with UV detection (LC-UV). The effect of electrolyte Solution (lithium perchlorate or tetrabutylammonium perchlorate) and the number of cycles (50, 100 or 200) applied during the polymerization process on the SPME performance was evaluated. Important factors in the optimization of SPME efficiency such as extraction time, temperature, pH, influence of plasma proteins on sorption mechanisms, and desorption conditions are discussed. The SPME-PPY/LC method showed to be linear in concentrations ranging from the limit of quantification (LOQ) to 1200 ng mL(-1). The LOQ values range from 16 to 25 ng mL-1. The inter-day precision of the SPME-PPY/LC method presented coefficient of variation (CV) lower than 15%. Based on analytical validation results, the SPME-PPY/LC methodology showed to be adequate for antidepressant analysis, from therapeutic to toxic levels. In order to evaluate the proposed method for clinical use, the SPME-PPY/LC method was applied to the analysis of plasma samples from elderly depressed patients. (c) 2009 Elsevier B.V. All rights reserved,
Resumo:
Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(center dot-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q + 15](-) was described as being a reaction between the solvent system and the radical anion, Q(center dot-).The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.
Resumo:
Laponite-derived materials represent promising materials for optical applications. In this work, Eu(3+)- or Er(3+)-doped laponite xerogels and films were prepared from colloidal dispersion. Homogeneous, crack-free and transparent single layers were deposited on soda-lime substrates with a thickness of 10 mu m. Structural and spectroscopic properties were analyzed by thermal analyses, X-ray diffractometry, transmission electron microscopy, infrared spectroscopy, and luminescence spectroscopy. The addition of a rare earth ion to the laponite does not promote any changes in thermal stability or phase transition. Laponite clay was identified after annealing up to 500 degrees C, with a decrease in basal spacing when the annealing temperature is changed from 100 degrees C to 500 degrees C. Enstatite polymorphs and amorphous silicate phases were observed after heat treatment at 700 degrees C and 900 degrees C. Stationary and time-dependent luminescence spectra in the visible region for Eu(3+), and (5)D(0) lifetime are discussed in terms of thermal treatment and structural evolution. In the layered host, the Eu(3+) ions are distributed in many different local environments. However, Eu(3+) ions were found to occupy at least two symmetry sites, and the ions are preferentially incorporated into the crystalline enstatite for the materials annealed at 700 degrees C and 900 degrees C. A (5)D(0) lifetime of 1.3 ms and 3.1 ms was obtained for Eu(3+) ions in an amorphous silicate and crystalline MgSiO(3) local environment, respectively. Strong Er(3+) emission at the 1550 nm region was observed for the materials annealed at 900 degrees C, with a bandwidth of 44 nm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Al-catechin/beta-cyclodextrin and Al-quercetin/beta-cyclodextrin (beta-CD) inclusion compounds were synthesized and characterized by IR, UV-vis, H-1 and C-13 NMR and TG and DTA analyses. Because quercetin is sparingly soluble in water, the stability constants of the Al-quercetin/beta-CD and Al-catechin/beta-CD compounds were determined by phase solubility studies. The A(L)-type diagrams indicated the formation of 1:1 inclusion compounds and allowed calculation of the stability constants. The thermodynamic parameters were obtained from the dependence of the stability constants on temperature and results indicated that the formation of the inclusion compounds is an enthalpically driven process. The thermal decomposition of the solid Al-quercetin/beta-CD and Al-catcchin/beta-CD inclusion compounds took place at different stages, compared with the respective precursors, proving that an inclusion complexation process really occurred. (C) 2007 Published by Elsevier B.V.
Resumo:
The knowledge of thermochemical parameters such as the enthalpy of formation, gas-phase basicity, and proton affinity may be the key to understanding molecular reactivity. The obtention of these thermochemical parameters by theoretical chemical models may be advantageous when experimental measurements are difficult to accomplish. The development of ab initio composite models represents a major advance in the obtention of these thermochemical parameters,. but these methods do not always lead to accurate values. Aiming at achieving a comparison between the ab initio models and the hybrid models based on the density functional theory (DFT), we have studied gamma-butyrolactone and 2-pyrrolidinone with a goal of obtaining high-quality thermochemical parameters using the composite chemical models G2, G2MP2, MP2, G3, CBS-Q, CBS-4, and CBS-QB3; the DFT methods B3LYP, B3P86, PW91PW91, mPW1PW, and B98; and the basis sets 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d), 6-311+G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. Values obtained for the enthalpies of formation, proton affinity, and gas-phase basicity of the two target molecules were compared to the experimental data reported in the literature. The best results were achieved with the use of DFT models, and the B3LYP method led to the most accurate data.
Resumo:
Surface pressure (pi)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-alpha-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from pi-A curves applying the additivity rule by calculating the excess free energy of mixture (Delta G(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A sensitive, selective, and reproducible in-tube solid-phase microextraction and liquid chromatographic (in-tube SPME/LC-UV) method for simultaneous determination of mirrazapine, citalopram, paroxetine, duloxetine, fluoxetine, and sertraline in human plasma was developed, validated and further applied to the analysis of plasma samples from elderly patients undergoing therapy with antidepressants. Important factors in the optimization of in-tube SPME efficiency are discussed, including the sample draw/eject volume, draw/eject cycle number, draw/eject flow-rate, sample pH, and influence of plasma proteins. The quantification limits of the in-tube SPME/LC method varied between 20 and 50 ng/mL, with a coefficient of variation lower than 10%. The response of the in-tube SPME/LC method for most of the drugs was linear over a dynamic range from 50 to 500 ng/mL, with correlation coefficients higher than 0.9985. The in-tube SPME/LC can be successfully used to analyze plasma samples from ageing patients undergoing therapy with nontricyclic antidepressants. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Nucleoside diphosphate kinases play a crucial role in the purine-salvage pathway of trypanosomatid protozoa and have been found in the secretome of Leishmania sp., suggesting a function related to host-cell integrity for the benefit of the parasite. Due to their importance for housekeeping functions in the parasite and by prolonging the life of host cells in infection, they become an attractive target for drug discovery and design. In this work, we describe the first structural characterization of nucleoside diphosphate kinases b from trypanosomatid parasites (tNDKbs) providing insights into their oligomerization, stability and structural determinants for nucleotide binding. Crystallographic studies of LmNDKb when complexed with phosphate, AMP and ADP showed that the crucial hydrogen-bonding residues involved in the nucleotide interaction are fully conserved in tNDKbs. Depending on the nature of the ligand, the nucleotide-binding pocket undergoes conformational changes, which leads to different cavity volumes. SAXS experiments showed that tNDKbs, like other eukaryotic NDKs, form a hexamer in solution and their oligomeric state does not rely on the presence of nucleotides or mimetics. Fluorescence-based thermal-shift assays demonstrated slightly higher stability of tNDKbs compared to human NDKb (HsNDKb), which is in agreement with the fact that tNDKbs are secreted and subjected to variations of temperature in the host cells during infection and disease development. Moreover, tNDKbs were stabilized upon nucleotide binding, whereas HsNDKb was not influenced. Contrasts on the surface electrostatic potential around the nucleotide-binding pocket might be a determinant for nucleotide affinity and protein stability differentiation. All these together demonstrated the molecular adaptation of parasite NDKbs in order to exert their biological functions intra-parasite and when secreted by regulating ATP levels of host cells.
Resumo:
The behavior of Pt/C and Pt-RuO(x)/C electrodes subjected to a larger number of potential scans and constant potential for prolonged time periods was investigated in the absence and presence of methanol. The structural changes were analyzed on the basis of the modifications observed in the X-ray diffraction pattern of the catalysts. Carbon monoxide stripping experiments were performed before and after the potential scans, thus enabling analysis of the behavior of the electrochemically active surface area. The resulting solutions were examined by inductively coupled plasma mass spectrometry (ICP-MS). There was reduction in the electrochemically active surface area, as well as increase in crystallite size and dissolution of catalyst components after the potential scan tests. Catalyst degradation was more pronounced in the presence of methanol, and cyclic potential conditions accelerate the degradation mechanisms. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.