215 resultados para MECHANICAL INFLAMMATORY HYPERNOCICEPTION
Resumo:
Inflammatory myofibroblastic tumor is a distinctive lesion composed of myofibroblastic spindle shaped cells accompanied by inflammatory infiltrate that may arise in various organs. It is believed to be a noneoplastic inflammatory condition, although this is still controversial. The recognition of inflammatory myofibroblastic tumor as an entity is important especially to avoid unnecessary surgery. A few cases have been reported in the oral cavity. This report primarily presents a case of inflammatory myofibroblastic tumor that arose in the floor of mouth of a 23-year-old woman. The proliferating spindle cells were immunoreactive for vimentin, smooth muscle actin, and muscle specific actin and negative for desmin, AE1/AE3, S-100, CD68, MyoD1 and caldesmon. In an attempt to assess the potential neoplastic nature of this lesion, immunohistochemical expression of ALK protein was performed, although no immunoreactivity was detected. Also, the presence of well differentiated myofibroblasts identified by fibronectin is discussed, as well as the importance in establishing an immunoprofile to better consolidate the diagnosis. We conclude that the study of fibronectin in case series may aid the diagnosis as well as the prediction of the tumor course.
Resumo:
Objectives To characterize the properties of dentin matrix treated with two proanthocyanidin rich cross-linking agents and their effect on dentin bonded interfaces. Methods Sound human molars were cut into 0.5mm thick dentin slabs, demineralized and either treated with one of two cross-linking agents (grape seedGSE and cocoa seedCOE extracts) or left untreated. The modulus of elasticity of demineralized dentin was assessed after 10 or 60min and the swelling ratio after 60min treatment. Bacterial collagenase was also used to assess resistance to enzymatic degradation of samples subjected to ultimate tensile strength. The effect of GSE or COE on the resindentin bond strength was evaluated after 10 or 60min of exposure time. Data were statistically analyzed at a 95% confidence interval. Results Both cross-linkers increased the elastic modulus of demineralized dentin as exposure time increased. Swelling ratio was lower for treated samples when compared to control groups. No statistically significant changes to the UTS indicate that collagenase had no effect on dentin matrix treated with either GSE or COE. Resindentin bonds significantly increased following treatment with GSE regardless of the application time or adhesive system used. Significance Increased mechanical properties and stability of dentin matrix can be achieved by the use of PA-rich collagen cross-linkers most likely due to the formation of a PAcollagen complex. The short term resindentin bonds can be improved after 10min dentin treatment.(C) 2010 Academy of Denta lMaterials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. This study evaluated the effect of composite pre-polymerization temperature and energy density on the marginal adaptation (MA), degree of conversion (DC), flexural strength (FS), and polymer cross-linking (PCL) of a resin composite (Filtek Z350, 3M/ESPE). Methods. For MA, class V cavities (4mmx2mmx2mm) were prepared in 40 bovine incisors. The adhesive system Adper Single Bond 2 (3M/ESPE) was applied. Before being placed in the cavities, the resin composite was either kept at room-temperature (25 degrees C) or previously pre-heated to 68 degrees C in the Calset (TM) device (AdDent Inc., Danbury, CT, USA). The composite was then light polymerized for 20 or 40s at 600mW/cm(2) (12 or 24 J/cm(2), respectively). The percentage of gaps was analyzed by scanning electron microscopy, after sectioning the restorations and preparing epoxy resin replicas. DC (n = 3) was obtained by FT-Raman spectroscopy on irradiated and non-irradiated composite surfaces. FS (n = 10) was measured by the three-point-bending test. KHN (n = 6) was measured after 24h dry storage and again after immersion in 100% ethanol solution for 24 h, to calculate PCL density. Data were analyzed by appropriate statistical analyses. Results. The pre-heated composite showed better MA than the room-temperature groups. A higher number of gaps were observed in the room-temperature groups, irrespective of the energy density, mainly in the axial wall (p < 0.05). Composite pre-heating and energy density did not affect the DC, FS and PCL (p > 0.05). Significance. Pre-heating the composite prior to light polymerization similar in a clinical situation did not alter the mechanical properties and monomer conversion of the composite, but provided enhanced composite adaptation to cavity walls. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to determine the influence of different ion-exchange temperatures on the biaxial flexural strength (sigma(f)), hardness (HV) and indentation fracture resistance (K(IF)) of a dental porcelain. Disk-shaped specimens were divided into five groups (n = 10) and submitted to an ion-exchange procedure using KNO(3) paste for 15 min in the following temperatures (degrees C); (I) 430; (II) 450; (III) 470; (IV) 490; (V) 510; and control (no ion exchange). The value of sigma(f) was determined in artificial saliva at 37 degrees C. The values of HV and K(IF) were obtained using 3 Vickers indentations in each specimen (19.6 N). Results showed that ion exchange increases significantly the properties of the material as compared to the control and no significant differences were found among the temperatures tested for any of the properties studied. (C) 2010 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey`s test (alpha = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.
Resumo:
The objective of this study was to verify the influence of photoactivation with the argon ion laser on shrinkage stress (SS), followed by evaluation of Vickers microhardness (VM), percentage of maximum hardness (PMH), flexural strength (FS), and flexural modulus (FM) of a composite resin. The study groups were: L1-laser at 200 mW for 10 seconds; L2-laser at 200 mW for 20 seconds; L3-laser at 250 mW for 10 seconds; L4-laser at 250 mW for 20 seconds; H-halogen light at 275 mW for 20 seconds. Data were analyzed by ANOVA/Tukey`s test (alpha=5%). The values of SS (MPa) were statistically lower for the group L3 (1.3)c, followed by groups L1 (2.7)b, L4 (3.4)a, b, L2 (3.7)a, and H (4.5)a. There was no difference in the values of VM when the same time of photoactivation was used, with respective values being L1=70.1a, L2=78.1b, L3=69.9a, L4=78.1b and H=79.9b. All groups showed a PMH of at least 80%. Only the group L1 showed differences in FS (MPa) and FM (GPa), the respective values of 86.2 and 5.4 being lower. Therefore, the use of argon ion laser had influenced the composite resin polymerization. The L3 group presented adequate mechanical properties and minimum SS, reducing the clinical working time for photoactivation of restorations with the tested resin by 50%.
Resumo:
Objective: Verify the influence of radiant exposure (H) on composite degree of conversion (DC) and mechanical properties. Methods: Composite was photoactivated with 3, 6, 12, 24, or 48 J/cm(2). Properties were measured after 48-h dry storage at room temperature. DC was determined on the flat surfaces of 6 mm x 2 mm disk-shaped specimens using FTIR. Flexural strength (FS) and modulus (FM) were accessed by three-point bending. Knoop microhardness number (KHN) was measured on fragments of FS specimens. Data were analyzed by one-way ANOVA/Tukey test, Student`s t-test, and regression analysis. Results: DC/top between 6 and 12 J/cm(2) and between 24 and 48 J/cm(2) were not statistically different. No differences between DC/top and bottom were detected. DC/bottom, FM, and KHN/top showed significant differences among all H levels. FS did not vary between 12 and 24 J/cm(2) and between 24 and 48 J/cm(2). KHN/bottom at 3 and 6 J/cm(2) was similar. KHN between top and bottom was different up to 12 J/cm(2). Regression analyses having H as independent variable showed a plateau region above 24 J/cm(2). KHN increased exponentially (top) or linearly (bottom) with DC. FS and FM increased almost linearly with DC/bottom up to 55% conversion. Conclusions: DC and mechanical properties increased with radiant exposure. Variables leveled off at high H levels. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Cutaneous leishmaniasis (CL) includes different clinical manifestations displaying diverse intensities of dermal Inflammatory infiltrate Diffuse CL (DCL) cases are hyporesponsive and lesions show very few lymphocytes and a predominance of macrophages In contrast localized CL (LCL) cases are responsive to leishmanial antigen and lesions exhibit granulocytes and mononuclear cell infiltration in the early phases changing to a pattern with numerous lymphocytes and macrophages later in the lesion Therefore different chemokines may affect the predominance of cell infiltration in distinct clinical manifestations In lesions from LCL patients we examined by flow cytometry the presence of different chemokines and their receptors in T cells and we verified a higher expression of CXCR3 in the early stages of LCL (less than 30 days of infection) and a higher expression of CCR4 in the late stages of disease (more than 60 days of infection) We also observed a higher frequency of T cells producing IL-10 in the late stage of LCL Using immunohistochemistry we observed a higher expression of CCL7 CCL17 in lesions from late LCL as well as CCR4 suggesting a preferential recruitment of regulatory T cells in the late LCL Comparing lesions from LCL and DCL patients we observed a higher frequency of CCL7 in DCL lesions These results point out the Importance of the chemokines defining the different types of cells recruited to the site of the infection which could be related to the outcome of infection as well as the clinical form observed (C) 2010 American Society for Histocompatibility and Immunogenetics Published by Elsevier Inc All rights reserved
Resumo:
During orthodontic tooth movement, there is local production of chemokines and an influx of leukocytes into the periodontium. CCL5 plays an important role in osteoclast recruitment and activation. This study aimed to investigate whether the CCR5-receptor influences these events and, consequently, orthodontic tooth movement. An orthodontic appliance was placed in wild-type mice (WT) and CCR5-deficient mice (CCR5(-/-)). The expression of mediators involved in bone remodeling was evaluated in periodontal tissues by Real-time PCR. The number of TRAP-positive osteoclasts and the expression of cathepsin K, RANKL, and MMP13 were significantly higher in CCR5(-/-). Meanwhile, the expression of two osteoblastic differentiation markers, RUNX2 and osteocalcin, and that of bone resorption regulators, IL-10 and OPG, were lower in CCR5(-/-). Analysis of the data also showed that CCR5(-/-) exhibited a greater amount of tooth movement after 7 days of mechanical loading. The results suggested that CCR5 might be a down-regulator of alveolar bone resorption during orthodontic movement.
Resumo:
Paracoccidioidomycosis, the major systemic mycosis in Latin America, is caused by fungus Paracoccidioides brasiliensis. To analyze the influence of inducible nitric oxide synthase (iNOS) in this disease, iNOS-deficient (iNOS(-/-)) and wild-type (WT) mice were infected intravenously with P. brasiliensis 18 isolate. We found that, unlike WT mice, iNOS(-/-) mice did not control fungal proliferation, and began to succumb to infection by day 50 after inoculation of yeast cells. Typical inflammatory granulomas were found in WT mice, while, iNOS(-/-) mice presented incipient granulomas with intense inflammatory process and necrosis. Additionally, splenocytes from iNOS(-/-) mice did not produce nitric oxide, however, their proliferative response to Con-A was impaired, just like infected WT mice. Moreover, infected iNOS(-/-) mice presented a mixed pattern of immune response, releasing high levels of both Th1 (IL-12, IFN-gamma and TNF-alpha) and Th2 (IL-4 and IL-10) cytokines. These data suggest that the enzyme iNOS is a resistance factor during paracoccidioidomycosis by controlling fungal proliferation, by influencing cytokines production, and by appeasing the development of a high inflammatory response and consequently formation of necrosis. However, iNOS-derived nitric oxide seems not being the unique factor responsible for immunosuppression observed in infections caused by P. brasiliensis. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Inflammatory cytokines contribute to periapical tissue destruction. Their activity is potentially regulated by suppressors of cytokine signaling (SOCS), which down-regulate signal transduction as part of an inhibitory feedback loop. We investigated the expression of the cytokines tumor necrosis factor alpha (TNF-alpha); interleukin (IL)-10 and RANKL; and SOCS-1, -2, and -3 by real-time polymerase chain reaction in 57 periapical granulomas and 38 healthy periapical tissues. Periapical granulomas exhibited significantly higher SOCS-1, -2, and -3, TNF-alpha, IL-10, and RANKL messenger RNA levels when compared with healthy controls. Significant positive correlations were found between SOCS1 and IL-10 and between SOCS3 and IL-10. Significant inverse correlations were observed between SOCS1 and TNF-alpha, SOCS1 and RANKL, and SOCS3 and TNF-alpha. Increased SOCS-1, -2, and -3 messenger RNA levels in periapical granulomas may be related to the downregulation of inflammatory cytokines in these lesions; therefore, SOCS molecules may play a role in the dynamics of periapical granulomas development. (J Endod 2008;34:1480-1484)
Resumo:
Periodontitis is an infectious disease, where putative periodontopathogens trigger chronic inflammatory and immune responses against periodontal structures, in which an unbalanced host response is also determinant to the disease outcome. It is reasonable to assume that patient susceptibility to periodontal tissue destruction could be determined by the balance between the response against periodontopathogens and regulatory mechanisms of these events mediated by suppressive T cells. In the present study, we identified and characterized natural regulatory T cells ( Tregs) in the inflammatory infiltrate of human chronic periodontitis ( CP) with emphasis on phenotypic analyses that were carried out to address the participation of Tregs in CP. Results showed that patients with CP presented increased frequency of T lymphocytes and CD4(+)CD25(+) T cells in the inflammatory infiltrate of gingival tissues. These cells exhibited the phenotypic markers of Tregs such as forkhead box p3 ( Foxp3), CTLA- 4, glucocorticoidinducible TNFR, CD103, and CD45RO and seemed to be attracted to the inflammation site by the chemokines CCL17 and CCL22, as their expression and its receptor CCR4 were increased in CP patients. Moreover, besides the increased detection of Foxp3 mRNA, diseased tissues presented high expression of the regulatory cytokines IL-10 and TGF-beta. In addition, the inflammatory infiltrate in CP biopsies was composed of CD25(+)Foxp3(+) and CD25(+)TGF-beta(+) cells, thus corroborating the hypothesis of the involvement of Tregs in the pathogenesis of CP. Finally, these results indicate that Tregs are found in the chronic lesions and must be involved in the modulation of local immune response in CP patients.
Resumo:
Inflammatory papillary hyperplasia of the palate (IPHP) is a tissue-reactive overgrowth characterized by hyperemic mucosa with nodular or papillary appearance in the palate. The exact pathogenesis is still unclear. In this study, the presence of Candida albicans in the epithelial lining was evaluated using the indirect immunofluorescence staining technique. Strongly stained C albicans was observed only in the lesions of the IPHP group. Therefore, the detection of C albicans in almost all samples from IPHP tissue enabled a suggestion as to the microbial etiology of the disease, since the use of dental prostheses was reported. Int J Prosthodont 2011;24:235-237
Resumo:
Objectives. The objective of this study was to elucidate the changes occurring in the temporomandibular joint (TMJ) after surgical mandibular advancement with different fixation techniques: bicortical screws (rigid fixation) and miniplates (semi-rigid fixation). Study design. Eighteen minipigs were equally and randomly divided into 3 groups: Group I (control), nonoperated animals; Group II, animals submitted to surgical advancement surgery and osteosynthesis by bicortical screws; and Group III, animals submitted to surgical advancement surgery and osteosynthesis by miniplates. Four months after the surgeries, the presence of interleukin (IL)-6 and IL-10 in synovial fluid samples was assessed in ELISA experiments. TMJs were histologically prepared. Results. Higher levels of IL-10 (P = .0436) were found for Group II. Descriptive histological analysis was compatible with the ELISA findings. Conclusions. Rigid fixation evokes more pronounced signs of bone remodeling in the TMJ, whereas malleable fixation promotes a more intense inflammatory activity. Therefore, rigid fixation seems to transmit a higher impact of postoperative masticatory forces to the TMJ.
Resumo:
Background: Fibroblasts are considered important cells in periodontitis. When challenged by different agents, they respond through the release of cytokines that participate in the inflammatory process. The aim of this study is to evaluate and compare the expression and production of macrophage inflammatory protein (MIP)-1 alpha, stromal-derived factor (SDF)-1, and interleukin (IL)-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide (LPS) from Porphyromonas gingivalis. Methods: Fibroblasts were cultured from biopsies of gingival tissue and periodontal ligament of the same donors and used on the fourth passage. After confluence in 24-well plates, the culture medium alone (control) or with 0.1 to 10 mu g/ml of LPS from P. gingivalis was added to the wells, and after 1, 6, and 24 hours, the supernatant and the cells were collected and analyzed by enzyme-linked immunosorbent assay and real-time polymerase chain reaction, respectively. Results: MIP-1 alpha, SDF-1, and IL-6 protein production was significantly greater in gingival fibroblasts compared to periodontal ligament fibroblasts. IL-6 was upregulated in a time-dependent manner, mainly in gingival fibroblasts (P<0.05), which secreted more MIP-1 alpha in the lowest concentration of LPS used (0.1 mu g/ml). In contrast, a basal production of SDF-1 that was inhibited with the increase of LPS concentration was detected, especially after 24 hours (P<0.05). Conclusion: The distinct ability of the gingival and periodontal ligament fibroblasts to secrete MIP-1 alpha, SDF-1, and IL-6 emphasizes that these cells may differently contribute to the balance of cytokines in the LPS-challenged periodontium. J Periodontol 2010;81:310-317.