234 resultados para Ethylene Oxide
Resumo:
Mycoplasma arthritidis causes autoimmune arthritis in rodents. It produces a superantigen (MAM) that simultaneously activates antigen presenting cells and T cells inducing nitric oxide and cytokine release. Nitric oxide is a key inducer and regulator of the immune system activation. Here, we investigated nitric oxide and cytokine production and interactions of these molecules in MAM-stimulated co-cultures of macrophages (J774A.1 cell line) with spleen lymphocytes. We found that: a) MAM-induced nitric oxide, interferon-gamma, membrane-associated tumor necrosis factor and interleukin-2 production in co-cultures of macrophages with lymphocytes from BALB/c and C3H/HePas but not from C57B1/6 mice; b) production of nitric oxide was dependent on interferon-gamma whereas that of interferon-gamma was dependent on interleukin-2 and membrane-associated tumor necrosis factor; c) these cytokines up regulated MAM-induced nitric oxide production. Unraveling the mechanisms of cell activation induced by MAM might be helpful to design strategies to prevent immune system activation by superantigens and therefore in seeking amelioration of associated immunopathologies. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Introduction: Cytolethal distending toxin (CDT) is a DNA-targeting agent produced by certain pathogenic gram-negative bacteria such as the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. CDT targets lymphocytes and other cells causing cell cycle arrest and apoptosis, impairing the host immune response and contributing to the persistence of infections caused by this microorganism. In this study we explored the effects of CDT on the innate immune response, by investigating how it affects production of nitric oxide (NO) by macrophages. Methods: Murine peritoneal macrophages were stimulated with Escherichia coli sonicates and NO production was measured in the presence or not of active CDT. Results: We observed that CDT promptly and significantly inhibited NO production by inducible nitric oxide synthase (iNOS) in a dose-dependent manner. This inhibition is directed towards interferon-gamma-dependent pathways and is not mediated by either interleukin-4 or interleukin-10. Conclusion: This mechanism may constitute an important aspect of the immunosuppression mediated by CDT and may have potential clinical implications in A. actinomycetemcomitans infections.
Resumo:
Nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) plays an important role in host defense, as well as in inflammation-induced tissue lesions. Here we evaluated the role of NO in bone loss in bacterial infection-induced apical periodontitis by using iNOS-deficient mice (iNOS(-/-)). The iNOS(-/-) mice developed greater inflammatory cell recruitment and osteolytic lesions than WT mice. Moreover, tartrate-resistant acid-phosphatase-positive (TRAP(+)) osteoclasts were significantly more numerous in iNOS-/- mice. Furthermore, the increased bone resorption in iNOS(-/-) mice also correlated with the increased expression of receptor activator NF-kappaB (RANK), stromal-cell-derived factor-1 alpha (SDF-1 alpha/CXCL12), and reduced expression of osteoprotegerin (OPG). These results show that NO deficiency was associated with an imbalance of bone-resorption-modulating factors, leading to severe infection-stimulated bone loss.
Resumo:
Formaldehyde (FA) exposure induces upper airways irritation and respiratory abnormalities, but its mechanisms are not understood. Since mast cells are widely distributed in the airways, we hypothesized that FA might modify the airways reactivity by mechanism involving their activation. Tracheal rings of rats were incubated with Dulbecco`s modified medium culture containing FA (0.1 ppm) in 96-well plastic microplates in a humid atmosphere. After 30 min, 6 h, and 24-72 h, the rings were suspended in an organ bath and dose-response curve to methacholine (MCh) were determined. incubation with FA caused a transient tracheal hyperresponsiveness to MCh that was independent from tracheal epithelium integrity. Connective tissue mast cell depletion caused by compound 48/80 or mast cell activation by the allergic reaction, before exposure of tracheal rings to FA prevented the increased responsiveness to MCh. LTB(4) concentrations were increased in the culture medium of tracheas incubated with FA for 48 h, whereas the LTB(4)-receptor antagonist MK886 (1 mu M) added before FA exposure rendered the tracheal rings normoreactive to MCh. In addition, FA exposure did not cause hyperresponsiveness in tracheal segments incubated with L-arginine (1 mu M). We suggest that airway connective tissue mast cells constitute the target and may provide the increased LTB(4) generation as well as an elevated consumption of NO leading to tracheal hyperresponsiveness to MCh. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The midbrain periaqueductal gray (PAG) is part of the brain system involved in active defense reactions to threatening stimuli. Glutamate N-methyl-d-aspartate (NMDA) receptor activation within the dorsal column of the PAG (dPAG) leads to autonomic and behavioral responses characterized as the fear reaction. Nitric oxide (NO) has been proposed to be a mediator of the aversive action of glutamate, since the activation of NMDA receptors in the brain increases NO synthesis. We investigated the effects of intra-dPAG infusions of NMDA on defensive behaviors in mice pretreated with a neuronal nitric oxide synthase (nNOS) inhibitor [N omega-propyl-l-arginine (NPLA)], in the same midbrain site, during a confrontation with a predator in the rat exposure test (RET). Male Swiss mice received intra-dPAG injections of NPLA (0.1 or 0.4 nmol/0.1 mu l), and 10 min later, they were infused with NMDA (0.04 nmol/0.1 mu l) into the dPAG. After 10 min, each mouse was placed in the RET. NMDA treatment enhanced avoidance behavior from the predator and markedly increased freezing behavior. These proaversive effects of NMDA were prevented by prior injection of NPLA. Furthermore, defensive behaviors (e.g., avoidance, risk assessment, freezing) were consistently reduced by the highest dose of NPLA alone, suggesting an intrinsic effect of nitric oxide on defensive behavior in mice exposed to the RET. These findings suggest a potential role of glutamate NMDA receptors and NO in the dPAG in the regulation of defensive behaviors in mice during a confrontation with a predator in the RET.
Resumo:
Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 degrees C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu(2)O(3), with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3457784]
Resumo:
A statistical data analysis methodology was developed to evaluate the field emission properties of many samples of copper oxide nanostructured field emitters. This analysis was largely done in terms of Seppen-Katamuki (SK) charts, field strength and emission current. Some physical and mathematical models were derived to describe the effect of small electric field perturbations in the Fowler-Nordheim (F-N) equation, and then to explain the trend of the data represented in the SK charts. The field enhancement factor and the emission area parameters showed to be very sensitive to variations in the electric field for most of the samples. We have found that the anode-cathode distance is critical in the field emission characterization of samples having a non-rigid nanostructure. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The present work shows the growth of nordstrandile microcrystals observed by transmission and scanning electron microscopy. Nordstrandite was synthesised from non-crystalline aluminium hydroxide reacted in 20% ethylene glycol/water solution, at room temperature. This material was characterized by TEM, SEM, SAED, XRD and EDS/TEM, during six month and revealed the formation and growth of nordstrandite. Fibrillar pseudoboehmite is the only aluminium hydroxide which could be identified during the first two weeks. The nuclei grow, from complete dissolution/recrystallization of pseudoboehmite fibrils, into platy rectangular microscrystals of nordstrandite. Some tabular microcrystals recrystallise, forming after six months only the mufti-point nordstrandite stars. This electron-optical study suggest that the star shape results from the overlapping of rectangular plates, and pseudoboehmite fibrils act as the precursor of nordstrandite crystallisation in ethylene glycol/water solution.
Resumo:
The title radical (F4BlmNN) is a stable nitronylnitroxide that forms hydrogen-bonded NH center dot center dot center dot ON chains in the solid state. The chains assemble the F4BlmNN molecules to form stacked contacts between the radical groups, in a geometry that is expected to exhibit ferromagnetic (FM) exchange based on spin polarization (SP) models. The experimental magnetic susceptibility of F4BlmNN confirms the expectation, showing 1-D Heisenberg chain FM exchange behavior over 1.8-300 K with an intrachain exchange constant Of J(chain)/k = +22 K. At lower temperatures, ac magnetic susceptibility and variable field heat capacity measurements show that F4BlmNN acts as a quasi-1-D ferromagnet. The dominant ferromagnetic exchange interaction is attributable to overlap between spin orbitals of molecules within the hydrogen-bonded chains, consistent with the SP model expectations. The chains appear to be antiferromagnetically exchange coupled, giving cusps in the ac susceptibility and zero field heat capacity at lower temperatures. The results indicate that the sample orders magnetically at about 0.7 K. The magnetic heat capacity ordering cusp shifts to lower temperatures as external magnetic field increases, consistent with forming a bulk antiferromagnetic phase below a Neel temperature of T-N(0) = 0.72 K, with a critical field of H-c approximate to 1800 Oe. The interchain exchange is estimated to be zJ/k congruent to (-)0.1 K.
Resumo:
Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermoluminescence (TL) and optically stimulated luminescence (OSL) processes in BeO phosphor. Two defect centres were identified in irradiated BeO phosphor by ESR measurements, which were carried out at room temperature and these were assigned to an O(-) ion and Al(2+) centre. The O(-) ion (hole centre) correlates with the main 190 degrees C TL peak. The Al(2+) centre (electron centre), which acts as a recombination centre, also correlates to the 190 degrees C TL peak. A third centre, observed during thermal annealing studies, is assigned to an O(-) ion and is related to the high temperature TL at 317 degrees C. This centre also appears to be responsible for the observed OSL process in BeO phosphor. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work presents the electro-optical characterization of metal-organic interfaces prepared by the Ion Beam Assisted Deposition (IBAD) method. IBAD applied in this work combines simultaneously metallic film deposition and bombardment with an independently controlled ion beam, allowing different penetration of the ions and the evaporated metallic elements into the polymer. The result is a hybrid, non-abrupt interface, where polymer, metal and ion coexists. We used an organic light emitting diode, which has a typical vertical-architecture, for the interface characterization: Glass/Indium Tin Oxide (ITO)/Poly[ethylene-dioxythiophene/poly{styrenesulfonicacid}]) (PEDOT:PSS) /Emitting Polymer/Metal. The emitting polymer layer comprised of the Poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (PFO) and the metal layer of aluminum prepared with different Ar(+) ion energies varying in the range from 0 to 1000 eV. Photoluminescence, Current-Voltage and Electroluminescence measurements were used to study the emission and electron injection properties. Changes of these properties were related with the damage caused by the energetic ions and the metal penetration into the polymer. Computer simulations of hybrid interface damage and metal penetration were confronted with experimental data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The evidence of successful growth of Mn-doped PbS (Pb(1-x)Mn(x)S) nanocrystals (NCs) in SiO(2)-Na(2)CO(3)-Al(2)O(3)-PbO(2)-B(2)O(3) template, using the fusion method, is reported on in this study. The as-grown Pb(1-x)Mn(x)S NC is characterized using optical absorption, electron paramagnetic resonance, and atomic force microscopy. The data are discussed in terms of two distinct scenarios, namely a core-doped and a shell-doped nanostructure. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Four aluminas were used as Supports for impregnation with a zirconium oxide with the aim to achieve a coating, without phase separation, between Support and modifier. The Supports were impregnated with different concentrations Of zirconium aqueous resin, obtained through the polymeric precursor method. After impregnation the samples were calcined and then characterized by XRD, which led to identification of crystalline zirconia in different concentrations from each support used. Using a simple geometric model the maximum amount Of Surface modifier Oxide required for the complete coating of a support with a layer of unit cells was estimated. According to this estimate, only the support should be identified below the limit proposed and crystalline zirconium oxide Should be identified above this limit when a complete coating is reached. The results obtained From XRD agree with the estimated values and to confirm the coating, the samples were also characterized by EDS/STEM, HRTEM, XPS, and XAS. The results showed that the zirconium oxide oil the Surface of alumina Support reached the coating in the limit of 15 Zr nm(-2), without the formation of the ZrO(2) phase. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
The photoluminescence of anodically prepared ZrO(2) films was investigated. Morphological and microstructural analyses reveal an oxide surface covered by a high distribution of blisters and the major crystallographic structure is the monoclinic phase with small quantities of tetragonal phase. The photoluminescence reveals a broad emission band in the range between 350 and 650 nm. It was proposed that the photoluminescence mechanism is originated from the emission of a recombination center related to defects (oxygen vacancies) formed during Zr anodization. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, calcium molybdate (CaMoO(4)) crystals (meso- and nanoscale) were synthesized by the coprecipitation method using different solvent volume ratios (water/ethylene glycol). Subsequently, the obtained suspensions were processed in microwave-assisted hydrothermal/solvothermal systems at 140 degrees C for 1 h. These meso- and nanocrystals processed were characterized by X-ray diffraction (X R I)), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR). ultraviolet visible (UV-vis) absorption spectroscopies, held-emission gun scanning electron microscopy (FEG-SEM). transmission electron microscopy (TEM). and photoluminescence (PL) measurements. X RI) patterns and FT-Raman spectra showed that these meso- and nanocrystals have a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 827 cm(-1), which is associated with the Mo-O anti-symmetric stretching vibrations into the [MoO(4)] clusters. FEG-SEM micrographs indicated that the ethylene glycol concentration in the aqueous solution plays an important role in the morphological evolution of CaMoO(4) crystals. High-resolution TEM micrographs demonstrated that the mesocrystals consist of several aggregated nanoparticles with electron diffraction patterns of monocrystal. In addition, the differences observed in the selected area electron diffraction patterns of CaMoO(4) crystals proved the coexistence of both nano- and mesostructures, First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were employed in order to understand the band structure find density of states For the CaMoO(4). UV-vis absorption measurements evidenced a variation in optical band gap values (from 3.42 to 3.72 cV) for the distinct morphologies. The blue and green PI. emissions observed in these crystals were ascribed to the intermediary energy levels arising from the distortions on the [MoO(4)] clusters clue to intrinsic defects in the lattice of anisotropic/isotropic crystals.