196 resultados para materials science, nanotechnology, nanoporous, thin film, block copolymer
Resumo:
This study reports on the development and characterization of bovine serum albumin (BSA) nanospheres containing Silicon(IV) phthalocyanine (NzPc) and/or maghemite nanoparticles (MNP), the latter introduced via ionic magnetic fluid (MF). The nanosized BSA-loaded samples were designed for synergic application while combining Photodynamic Therapy and Hyperthermia. Incorporation of MNP in the albumin-based template, allowing full control of the magnetic content, was accomplished by adding a highly-stable ionic magnetic fluid sample to the albumin suspension, following heat denaturing. The material`s evaluation was performed using Zeta potential measurements and scanning electron microscopy. The samples were characterized by steady-state techniques and time-resolved fluorescence. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic drug delivery system.
Resumo:
The magnetic resonance imaging contrast agent, the so-called Endorem (TM) colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe(3)O(4) monodomain and it was observed that its oxidation to gamma-Fe(2)O(3) occurs at 253.1 degrees C. The Mossbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T(1), T(2), and T(2)* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermooptic coefficient partial derivative n/partial derivative T, thermal conductivity K, optical birefringence Delta n(0), nonlinear refractive index n(2), nonlinear absorption beta` and third-order nonlinear susceptibility vertical bar chi((3))vertical bar are also reported.
Resumo:
The present work is a report of the characterization of superparamagnetic iron oxide nanoparticles coated with silicone used as a contrast agent in magnetic resonance imaging of the gastrointestinal tract. The hydrodynamic size of the contrast agent is 281.2 rim, where it was determined by transmission electron microscopy and a Fe(3)O(4) crystalline structure was identified by X-ray diffraction, also confirmed by Mossbauer Spectroscopy. The blocking temperature of 190 K was determined from magnetic measurements based on the Zero Field Cooled and Field Cooled methods. The hysteresis loops were measured at different temperatures below and above the blocking temperature. Ferromagnetic resonance analysis indicated the superparamagnetic nature of the nanoparticles and a strong temperature dependence of the peak-to-peak linewidth Delta H(pp), giromagnetic factor g, number of spins N(S) and relaxation time T(2) were observed. This behavior can be attributed to an increase in the superexchange interaction.
Resumo:
We studied the anisotropic aggregation of spherical latex particles dispersed in a lyotropic liquid crystal presenting three nematic phases; calamitic, biaxial, and discotic. We observed that in the nematic calamitic phase aggregates of latex particles are formed, which become larger and anisotropic in the vicinity of the transition to the discotic phase, due to a coalescence process. Such aggregates are weakly anisotropic and up to 50 mu m long and tend to align parallel to the director field. At the transition to the discotic phase, the aggregates dissociated and re-formed when the system was brought back to the calamitic phase. This shows that the aggregation is due to attractive and repulsive forces generated by the particular structure of the nematic phase. The surface-induced positional order was investigated by surface force apparatus experiments with the lyotropic system confined between mica surfaces, revealing the existence of a presmectic wetting layer around the surfaces and oscillating forces of increasing amplitude as the confinement thickness was decreased. We discuss the possible mechanisms responsible for the reversible aggregation of latex particles, and we propose that capillary condensation of the N(C) phase, induced by the confinement between the particles, could reduce or remove the gradient of order parameter, driving the transition of aggregates from solidlike to liquidlike and gaslike.
Resumo:
Bovine pericardium, for cardiac valve fabrication, was coated with either chitosan or silk fibroin film. In vitro calcification tests of coated and non coated bovine pericardium were performed in simulated body fluid solution in order to investigate potential alternatives to minimize calcification on implanted heart valves. Complementary, morphology was assessed by scanning electron microscopy - SEM; X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) were performed for structural characterization of coatings and biocompatibility of chitosan. Silk fibroin films were assayed by in vitro cytotoxicity and endothelial cell growth tests. Bovine pericardium coated with silk fibroin or chitosan did not present calcification during in vitro calcification tests, indicating that these biopolymeric coatings do not induce bovine pericardium calcification. Chitosan and silk fibroin films were characterized as non cytotoxic and silk fibroin films presented high affinity to endothelial cells. The results indicate that bovine pericardium coated with silk fibroin is a potential candidate for cardiac valve fabrication, since the affinity of silk fibroin to endothelial cells can be explored to induce the tissue endothelization and therefore, increase valve durability by increasing their mechanical resistance and protecting them against calcification. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this study, the photodynamic action of liposomes (LP) and nanocapsules (NC) containing Chloroaluminum phthalocyanine (CIAIPc), on the human melanoma cell (WM 1552C), was assessed. The light source was setup at 672 nm, which corresponds to the maximum absorption wavelength of the CIAIPc. Both colloidal carriers presented size in nanometric scale as well as negative zeta potential. The cellular damage was light dose dependent ranging from 30% of cell death at 70 mJ.cm(-2) to 90% of death at 700 mJ.cm(-2). However, the photocytotoxic effect of LP at 70 mJ.cm(-2) was slightly more efficient to induce cellular death than NC formulation. At 140 mJ.cm(-2), and 700 mJ.cm(-2) both nanocarriers were equally efficient to induce cellular damage. Therefore, in the present work, the maximum phototoxic effect was obtained with 700 mJ.cm(-2) of light dose, in combination with 0.29 mu g.mL(-1) of CIAIPc encapsulated into LP and NC. The cells were also positive to annexin V, after the PDT treatment with LP and NC, showing that one of the mechanisms of cellular death involved is apoptosis. In summary, the potential of LP and NC as a drug delivery system, in Photodynamic Therapy (PDT) against melanoma, has been confirmed using a lower concentration of the photosensitizer and lower light doses than that applied in current protocols. This is an innovative proposal to treat melanoma cell lines that until now have not received the benefit of the PDT protocol for treatment.
Resumo:
Formation of stable thin films of mixed xyloglucan (XG) and alginate (ALG) onto Si/SiO2 wafers was achieved under pH 11.6, 50 mM CaCl2, and at 70 degrees C. XG-ALG films presented mean thickness of (16 +/- 2) nun and globules rich surface, as evidenced by means of ellipsometry and atomic force microscopy (AFM), respectively. The adsorption of two glucose/mannose-binding seed (Canavalia ensiformis and Dioclea altissima) lectins, coded here as ConA and DAlt, onto XG-ALG surfaces took place under pH 5. Under this condition both lectins present positive net charge. ConA and DAIt adsorbed irreversibly onto XG-ALG forming homogenous monolayers similar to(4 +/- 1)nm thick. Lectins adsorption was mainly driven by electrostatic interaction between lectins positively charged residues and carboxylated (negatively charged) ALG groups. Adhesion of four serotypes of dengue virus, DENV (1-4), particles to XG-ALG surfaces were observed by ellipsometry and AFM. The attachment of dengue particles onto XG-ALG films might be mediated by (i) H bonding between E protein (located at virus particle surface) polar residues and hydroxyl groups present on XG-ALG surfaces and (ii) electrostatic interaction between E protein positively charged residues and ALG carboxylic groups. DENV-4 serotype presented the weakest adsorption onto XG-ALG surfaces, indicating that E protein on DENV-4 surface presents net charge (amino acid sequence) different from E proteins of other serotypes. All four DENV particles serotypes adsorbed similarly onto lectin films adsorbed. Nevertheless, the addition of 0.005 mol/L of mannose prevented dengue particles from adsorbing onto lectin films. XG-ALG and lectin layers serve as potential materials for the development of diagnostic methods for dengue. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Poly(ethylene glycol) decorated poly( methyl methacrylate) particles were synthesized by means of emulsion polymerization using poly(ethylene glycol) sorbitan monolaurate (Tween-20) as surfactant. PMMA/PEG particles presented mean diameter (195 +/- 15) nm, indicating narrow size distribution. The adsorption behavior of bovine serum albumin (BSA) and concanavalin A (ConA) onto PMMA/PEG particles was investigated by means of spectrophotometry. Adsorption isotherms obtained for BSA onto PMMA/PEG particles fitted well sigmoidal function, which is typical for multilayer adsorption. Con A adsorbed irreversibly onto PMMA/PEG particles. The efficiency of ConA covered particles to induce dengue virus quick agglutination was evaluated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The interaction between dengue virus particles (DENV), sedimentation hemagglutinin particles (SHA), dengue virus envelope protein (Eprot), and solid surfaces was investigated by means of ellipsometry and atomic force microscopy (AFM). The surfaces chosen are bare Si/SiO(2) wafers and Si/SiO(2) wafers covered with concanavalin A (ConA), jacalin (Jac), polystyrene (PS), or poly(styrene sulfonate) (PSS) films. Adsorption experiments at pH 7.2 and pH 3 onto all surfaces revealed that (i) adsorption of DENV particles took place only onto ConA under pH 7.2, because of specific recognition between glycans on DENV surface and ConA binding site; (ii) DENV particles did not attach to any of the surfaces at pH 3, suggesting the presence of positive charges on DENV surface at this pH, which repel the positively charged lectin surfaces; (iii) SHA particles are positively charged at pH 7.2 and pH 3 because they adhered to negatively charged surfaces at pH 7.2 and repelled positively charged layers at pH 3; and (iv) SHA particles carry polar groups on the surface because they attached to silanol surfaces at pH 3 and avoided hydrophobic PS films at pH 3 and pH 7.2. The adsorption behavior of Eprot at pH 7.2 revealed affinity for ConA > Jac > PSS > PS approximate to bare Si/SiO(2) layers. These findings indicate that selectivity of the Eprot adsorption is higher when it is part of virus structure than when it is free in solution. The correlation between surface energy values determined by means of contact angle measurements and DENV, SHA, or Eprot adsorption behavior was used to understand the intermolecular forces at the interfaces. A direct correlation was not found because the contributions from surface energy were probably surpassed by specific contributions.
Resumo:
The purpose of this study is to characterize the structure of the beak of Toco Toucan (Ramphastos toco) and to investigate means for arresting fractures in the rhinotheca using acrylic resin. The structure of the rhamphastid bill has been described as a sandwich structured composite having a thin exterior comprised of keratin and a thick foam core constructed of mineralized collagenous rods (trabeculae). The keratinous rhamphotheca consists of superposed polygonal scales (approximately 50 pm in diameter and 1 mu m in thickness). In order to simulate the orientation of loading to which the beak is subjected during exertion of bite force, for example, we conducted flexure tests on the dorso-ventral axis of the maxilla. The initially intact (without induced fracture) beak fractured in the central portion when subjected to a force of 270 N, at a displacement of 23 mm. The location of this fracture served as a reference for the fractures induced in other beaks tested. The second beak was fractured and repaired by applying resin on both lateral surfaces. The repaired maxilla sustained a force of 70 N with 6.5 mm deflection. The third maxilla was repaired similarly except that it was conditioned in acid for 60s prior to fixation with resin. It resisted a force of up to 63 N at 6 mm of deflection. The experimental results were compared with finite element calculations for unfractured beak in bending configuration. The repaired specimens were found to have strength equal to only one third of the intact beak. Finite element simulations allow visualization of how the beak system (sandwich shell and cellular core) sustains high flexural strength. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Zirconia (ZrO(2)) is a bioinert, strong, and tough ceramic, while titania (TiO(2)) is bioactive but has poor mechanical properties. It is expected that ZrO(2)-TiO(2) mixed ceramics incorporate the individual properties of both ceramics, so that this material would exhibit better biological properties. Thus, the objective of this study was to compare the biocompatibility properties of ZrO(2)-TiO(2) mixed ceramics. Sintered ceramics pellets, obtained from powders of TiO(2), ZrO(2), and three different ZrO(2)-TiO(2) mixed oxides were used. Roughnesses, X-ray diffraction, microstructure through SEM, hardness, and DRIFT characterizations were performed. For biocompatibility analysis cultured FMM1 fibroblasts were plated on the top of disks and counted in SEM micrographs 1 and 2 days later. Data were compared by ANOVA complemented by Tukey`s test. All samples presented high densities and similar microstructure. The H(2)O content in the mixed ceramics was more evident than in pure ceramics. The number of fibroblasts attached to the disks increased significantly independently of the experimental group. The cell growth on the top of the ZrO(2)-TiO(2) samples was similar and significantly higher than those of TiO(2) and ZrO(2) samples. Our in vitro experiments showed that the ZrO(2)-TiO(2) sintered ceramics are biocompatible allowing faster cell growth than pure oxides ceramics. The improvement of hardness is proportional to the ZrO(2) content. Thus, the ZrO(2)-TiO(2) sintered ceramics could be considered as potential implant material. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 305-311, 2010.
Resumo:
Objective. To evaluate the effect of two additives, aldehyde or diketone, on the wear, roughness and hardness of bis-GMA-based composites/copolymers containing TEGDMA, propoxylated bis-GMA (CH(3)bis-GMA) or propoxylated fluorinated bis-GMA (CF(3)bis-GMA). Methods. Fifteen experimental composites and 15 corresponding copolymers were prepared combining bis-GMA and TEGDMA, CH3bis-GMA or CF3bis-GMA, with aldehyde (24mol% and 32 mol%) or diketone (24 mol% and 32 mol%) totaling 30 groups. For composites, hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%) was added to monomer mixtures. Photopolymerization was affected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Wear (W) test was conducted in a toothbrushing abrasion machine (n = 6) and quantified using a profilometer. Surface roughness (R) changes, before and after abrasion test, were determined using a rugosimeter. Microhardness (H) measurements were performed for dry and wet samples using a Knoop microindenter (n = 6). Data were analyzed by one-way ANOVA and Tukey`s test (alpha = 0.05). Results. Incorporation of additives led to improved W and H values for bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA systems. Additives had no significant effect on the W and H changes of bis-GMA/CF(3)bis-GMA. With regard to R changes, additives produced decreased values for bis-GMA/CH3bis-GMA and bis-GMA/CF3bis-GMA composites. Bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA copolymers with additives became smoother after abrasion test. Significance. The findings correlate with additives ability to improve degree of conversion of some composites/copolymers thereby enhancing mechanical properties. Published by Elsevier Ltd on behalf of Academy of Dental Materials
Resumo:
In the field of regenerative medicine, nanoscale physical cuing is clearly becoming a compelling determinant of cell behavior. Developing effective methods for making nanostructured surfaces with well-defined physicochemical properties is thus mandatory for the rational design of functional biomaterials. Here, we demonstrate the versatility of simple chemical oxidative patterning to create unique nanotopographical surfaces that influence the behavior of various cell types, modulate the expression of key determinants of cell activity, and offer the potential of harnessing the power of stem cells. These findings promise to lead to a new generation of improved metal implants with intelligent surfaces that can control biological response at the site of healing.
Resumo:
The purpose of this in vitro study was to determine whether the vicinity of root dentine that had been restored with fluoride-releasing materials was at reduced risk for erosive/abrasive wear compared to root dentine restored with a non-fluoride-containing material. According to a randomized complete block design, standardized cavities prepared on the surface of 150 bovine root dentine slabs were restored with glass-ionomer cement, resin-modified glass ionomer, polyacid-modified resin composite, fluoride-containing or conventional composite. Specimens were coated with two layers of an acid-resistant nail varnish exposing half of the dentine surface and half of the restoration. Subsequently, specimens were either eroded in an acidic drink or left uneroded, then exposed to artificial saliva and abraded in a toothbrushing machine. Wear depth in the vicinity of restorations was quantified by a stylus profilometer, based on the nonabraded areas surrounding the erosion/abrasion region. Two-way ANOVA did not demonstrate significant interaction between restoratives and eroded-uneroded dentine (p = 0.5549) nor significant difference among restorative materials (p = 0.8639). Tukey`s test ascertained that the wear depth was higher for eroded than for uneroded groups. Fluoride-releasing materials seemed to negligibly inhibit wear in the vicinity of restored root dentine subjected to erosive/abrasive challenges.
Resumo:
This study sought to evaluate the microhardness of root dentine adjacent to glass-ionomer and composite resin restorations after erosive challenge. A crossover study was performed in two phases of 4 consecutive days each. One hundred twelve bovine root dentine slabs were obtained, and standardized box-shaped cavities were prepared at center of each specimen. The prepared cavities were randomly restored with glass-ionomer cement or composite resin. The slabs were randomly assigned among 14 volunteers, which wore intraoral palatal device containing four restored root dentin slabs. Starting on the second day, half of the palatal acrylic devices were immersed extraorally in a lemonade-like carbonated soft drink for 90 s, four times daily for 3 days. Alter 3-day wash-out, dentine slabs restored with the alternative material were placed into palatal appliance and the volunteers started the second phase of this study. After erosive challenges. microhardness measurements were performed. Regardless of the restorative material employed, eroded specimens demonstrated lower microhardness value (p < 0.0001). At eroded condition examined in this study, dentine restored with glass-ionomer cement showed higher microhardness values (p < 0.0001). It may be concluded that the glass-ionomer cement decreases the progression of root dentine erosion at restoration margin. (C) 2010 Wiley Periodicals, Inc J Biomed Mater Res Part B Appl Biomater 93B 304-305, 2010