206 resultados para oxidative muscle
Masticatory muscle function three years after surgical correction of class III dentofacial deformity
Resumo:
Individuals with dentofacial deformities have masticatory muscle changes. The objective of the present study was to determine the effect of interdisciplinary treatment in patients with dentofacial deformities regarding electromyographic activity (EMG) of masticatory muscles three years after surgical correction. Thirteen patients with class III dentofacial deformities were studied, considered as group PI (before surgery) and group P3 (3 years to 3 years and 8 months after surgery). Fifteen individuals with no changes in facial morphology or dental occlusion were studied as controls. The participants underwent EMG examination of the temporal and masseter muscles during mastication and biting. Evaluation of the amplitude interval of EMG activity revealed a difference between P1 and P3 and no difference between P3 and the control group. In contrast, evaluation of root mean square revealed that, in general, P3 values were higher only when compared with PI and differed from the control group. There was an improvement in the EMG activity of the masticatory muscles, mainly observed in the masseter muscle, with values close to those of the control group in one of the analyses.
Resumo:
This study seeks to assess the effect of inspiratory muscle training (IMT) on pulmonary function, respiratory muscle strength, and endurance in morbidly obese patients submitted to bariatric surgery. Thirty patients were randomly assigned to sham muscular training, or to IMT with a threshold device (40% of maximum inspiratory pressure, MIP), for 30 min/day, from the 2nd until 30th postoperative (PO) day. All of them were submitted to a standard respiratory kinesiotherapy and early deambulation protocol. Data on spirometry, maximum static respiratory pressures, and respiratory muscle endurance were collected on the PO days 2, 7, 14, and 30 in a blinded matter. IMT enabled increases in PO MIP and endurance, and an earlier recovery of the spirometry parameters FEV(1), PEF, and FEF(25-75%). Comparing to preoperative values, MIP was increased by 13% at the 30th PO day in the trained group, whereas control group had a reduction of 8%, with higher values for the IMT group (30th PO, IMT-130.6 +/- 22.9 cmH(2)O; controls-112.9 +/- 25.1 cmH(2)O; p < 0.05). Muscular endurance at the 30th PO day was increased in the trained group comparing to preoperative value (61.5 +/- 39.6 s vs 114.9 +/- 55.2 s; p < 0.05), a finding not observed in the control group (81.7 +/- 44.3 vs 95.2 +/- 42.0 s). IMT improves inspiratory muscle strength and endurance and accounts for an earlier recovery of pulmonary airflows in morbidly obese patients submitted to bariatric surgery.
Resumo:
The aim of the present study was to compare oxidative stress biomarkers determined in blood and saliva before and after acute resistance exercise. 1 week after 1 maximum repetition (1RM) test 11 healthy well-trained males completed a hypertrophy acute session of resistance training including 3 sets of 10 repetitions at 75% of the 1RM, with 90s rest periods between sets. Venous blood and saliva samples were collected before (pre) and 10 min after (post) the resistance training session. A significant (p < 0.05) rise in blood lactate accumulation (pre: 1.6 +/- 0.4 vs. post: 9.5 +/- 2.4) was found post-acute resistance training compared with baseline values. Significant increases (p < 0.05) in TBARS (42%), AOPP (28%), uric acid (27%) and GSH (14%) were detected post-acute resistance training in relation to pre in blood samples. A significant increase (p < 0.05) in uric acid (36%) was found in saliva post-acute resistance training as well as a significant correlation (p < 0.05) between uric acid determined in blood and saliva. Statistical analysis did not reveal any other change in the salivary oxidative stress biomarkers. In conclusion, an acute session of resistance exercise induces oxidative stress in plasma of trained men after acute resistance training, which was not found in saliva samples except for uric acid.
Resumo:
This study examined the effect of weight loss on energy intake, vitamin C, E, beta-carotene (diet/blood), reduced glutathione (GSH), C-reactive protein (CRP), thiobarbituric acid reactive substances (TBARS), catalase, and myeloperoxidase, in patients with Roux-en-Y bypass gastroplasty. Prospective clinical study with control (C) and bariatric (B) groups (n = 20 each). Age was 38.8 +/- 11.1 (C) and 37.8 +/- 11.2 years (B), and body mass indices (BMI) were 22.4 +/- 2.4 and 48.1 +/- 8.7 kg/m(2), respectively. Group C was assessed on a single occasion and B at three time points (basal period and 3 and 6 months after gastroplasty). BMI was decreased at three (38.3 +/- 1.7, P = 0.018) and 6 months after surgery (34.9 +/- 1.7, P < 0.001). Mean weight loss was 20.53 +/- 1.1 after three and 27.96 +/- 1.3 kg after 6 months. Serum vitamin C and beta-carotene (P < 0.01 and P < 0.001, respectively) were increased at 6 months compared to basal. Basal serum vitamin C (P = 0.001) and beta-carotene (P < 0.001) were lower compared to controls. Serum vitamin E corrected for cholesterol and triglycerides was higher in group B at three (P = 0.01) and 6 months (P = 0.001) and lower at basal (P < 0.001) compared to controls. GSH was higher in controls (P < 0.001) compared to basal. Catalase (P = 0.01) and TBARS (P < 0.001) were higher in group B at 6 months. TBARS were higher (P < 0.001) at basal compared to controls. Myeloperoxidase and CRP decreased in group B after three (P = 0.028, P = 0.010) and 6 months (P < 0.001, P = 0.001), respectively. Roux-en-Y bypass gastroplasty led to decreased proinflammatory parameters together with increased nutritional antioxidants, catalase, and TBARS, and decreased GSH 6 months after surgery.
Resumo:
The aim of this study was to describe the status of oxidative stress and antioxidant biomarkers and their association with metabolic and body composition components of HIV-lipodystrophy syndrome. In a cross-sectional study of blood samples from HIV-infected men with lipodystrophy syndrome (HIV+LIPO+ = 10), HIV-infected men without lipodystrophy syndrome (HIV+LIPO- = 22), and healthy subjects (control = 12), the following oxidative stress biomarkers were analyzed: total hydroperoxide, thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP). In addition, antioxidant biomarkers, including total glutathione, uric acid, alpha-tocopherol, and metabolic components were tested. Dual-energy x-ray absorciometry (DXA) was used to measure the fat mass. The duration of HIV infection and the duration and type of highly active antiretroviral therapy were similar between the two HIV-infected groups. Higher levels of total hydroperoxide were observed in the HIV+LIPO+ (50 +/- 33 H(2)O(2)/L) group compared to the HIV+LIPO-(19 +/- 13 H(2)O(2)/L) and control (5 +/- 5 H(2)O(2)/L) groups (p < 0.05). Similarly, higher levels of AOPP were observed in the HIV+LIPO+ (326 +/- 173 mu mol/L) group compared to the HIV+LIPO- (105 +/- 92 mu mol/L) and control groups (80 +/- 20 mu mol/L) (p < 0.05). Total hydroperoxide significantly correlated with insulin serum levels in the HIV+LIPO+ (r = 0.47, p < 0.05) and HIV+LIPO- groups (r = 0.29, p < 0.05), while AOPP significantly correlated with insulin serum levels in the HIV+LIPO+ (r = 0.73, p < 0.05) and HIV+LIPO- (r = 0.54, p < 0.05) groups. Therefore, higher lipid and protein oxidation were found in HIV-infected patients with lipodystrophy syndrome, and both were associated with insulin levels.
Resumo:
Objective: To analyse the effect of integrated orthodontic treatment, orthognathic surgery and orofacial myofunctional therapy on masseter muscle thickness in patients with class III dentofacial deformity three years after orthognathic surgery. Design: A longitudinal study was conducted on 13 patients with class III dentofacial deformities, denoted here as group P1 (before surgery) and group P3 (same patients 3 years to 3 years and 8 months after surgery). Fifteen individuals with no changes in facial morphology or dental occlusion were assigned to the control group (CG). Masseter muscle ultrasonography was performed in the resting and biting situations in the three groups. Data were analysed statistically by a mixed-effects linear model considering a level of significance of P < 0.05. Results: Significantly higher values (P < 0.01) of masseter muscle thickness (cm) were detected in group P3 (right rest: 0.82 +/- 0.16, left rest: 0.87 +/- 0.21, right bite: 1 +/- 0.22, left bite: 1.04 +/- 0.28) compared to group P1 (right rest: 0.63 +/- 0.19, left rest: 0.64 +/- 0.15, right bite: 0.87 +/- 0.16, left bite: 0.88 +/- 0.14). Between P3 and CG (right rest: 1.02 +/- 0.19, left rest: 1 +/- 0.19, right bite: 1.18 +/- 0.22, left bite: 1.16 +/- 0.22) there was a significant difference on the right side of the muscle (P < 0.05) in both situations and on the left side at rest. Conclusion: The proposed treatment resulted in improved masseter muscle thickness in patients with class III dentofacial deformity. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Oxidative stress and lipid peroxidation, associated with ethanol, are considered important pathogenic mechanisms in the formation of hepatic steatosis. The objective of the present study was to assess the effects of supplementation with lecithin and vitamin E on the oxidatives stress and hepatic steatosis induced in rats by chronic ethanol consumption. Fifty-two Wistar rats were divided into 4 experimental groups: control (AIN-93 diet), ethanol group (control diet plus a 20% hydroalcoholic solution), ethanol + vitamin E group (addition of 0.6% vitamin E to the diet plus a 20% hydroalcoholic solution); ethanol + soy lecithin group (addition of 5 % soy lecithin to the diet plus a 20% hydroalcoholic solution). At the end of 4 weeks the animals were sacrificed. The results showed a significantly smaller number of animals (p < 0.05) classified as having a low degree of steatosis in the ethanol + vitamin E group and ethanol + soy lecithin group compared to the ethanol group. In addition, the ethanol + soy lecithin group had a significantly lower concentration of hepatic fat (p < 0.05) than the ethanol group. A significant reduction of hepatic TBARS concentration (p < 0.05) was detected in the ethanol + vitamin E group compared to the ethanol group. Hepatic carbonyl concentration was significantly lower in the ethanol + soy lecithin group. However, hepatic GSH was significantly lower in the ethanol + vitamin E and ethanol + soy lecithin groups compared to the control group. In conclusion, supplementation with lecithin and vitamin E attenuated the hepatotoxic effects of chronic ethanol intake and contributed to a reduction of the progression of steatosis status.
Resumo:
Yogi A, Callera GE, Tostes R, Touyz RM. Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 296: R201-R207, 2009. First published September 17, 2008; doi: 10.1152/ajpregu.90602.2008.-Transient receptor potential melastatin-7 (TRPM7) channels have recently been identified to be regulated by vasoactive agents acting through G protein-coupled receptors in vascular smooth muscle cells (VSMC). However, downstream targets and functional responses remain unclear. We investigated the subcellular localization of TRPM7 in VSMCs and questioned the role of TRPM7 in proinflammatory signaling by bradykinin. VSMCs from Wistar-Kyoto rats were studied. Cell fractionation by sucrose gradient and differential centrifugation demonstrated that in bradykinin-stimulated cells, TRPM7 localized in fractions corresponding to caveolae. Immunofluorescence confocal microscopy revealed that TRPM7 distributes along the cell membrane, that it has a reticular-type intracellular distribution, and that it colocalizes with flotillin-2, a marker of lipid rafts. Bradykinin increased expression of calpain, a TRPM7 target, and stimulated its cytosol/membrane translocation, an effect blocked by 2-APB (TRPM7 inhibitor) and U-73122 (phospholipase C inhibitor), but not by chelerythrine (PKC inhibitor). Expression of proinflammatory mediators VCAM-1 and cyclooxygenase-2 (COX-2) was time-dependently increased by bradykinin. This effect was blocked by Hoe-140 (B(2) receptor blocker) and 2-APB. Our data demonstrate that in bradykinin-stimulated VSMCs: 1) TRPM7 is upregulated, 2) TRPM7 associates with cholesterol-rich microdomains, and 3) calpain and proinflammatory mediators VCAM-1 and COX2 are regulated, in part, via TRPM7- and phospholipase C-dependent pathways through B2 receptors. These findings identify a novel signaling pathway for bradykinin, which involves TRPM7. Such phenomena may play a role in bradykinin/B(2) receptor-mediated inflammatory responses in vascular cells.
Resumo:
We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phoxcontaining NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P < 0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2-to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P < 0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.
Resumo:
Quercetin (1) is known to have both antioxidant and antinociceptive effects. However, the mechanism involved in its antinociceptive effect is not fully elucidated. Cytokines and reactive oxygen species have been implicated in the cascade of events resulting in inflammatory pain. Therefore, we evaluated the antinociceptive mechanism of 1 focusing on the role of cytokines and Oxidative stress. Intraperitoneal and oral treatments with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid and phenyl-p-benzoquinone and also the second phase of formalin- and carrageenin-induced mechanical hypernociception. Compound I also inhibited the hypernociception induced by cytokines (e.g., TNF alpha and CXCL1), but not by inflammatory mediators that directly sensitize the nociceptor such as PGE(2) and dopamine. On the other hand, 1 reduced carrageenin-induced IL-1 beta production as well as carrageenin-induced decrease of reduced glutathione (GSH) levels. These results suggest that I exerts its analgesic effect by inhibiting pro-nociceptive cytokine production and the oxidative imbalance mediation of inflammatory pain.
Resumo:
Rationale Hyperaldosteronism, important in hypertension, is associated with electrolyte alterations, including hypomagnesemia, through unknown mechanisms. Objective To test whether aldosterone influences renal Mg(2+) transporters, (transient receptor potential melastatin (TRPM) 6, TRPM7, paracellin-1) leading to hypomagnesemia, hypertension and target organ damage and whether in a background of magnesium deficiency, this is exaggerated. Methods and results Aldosterone effects in mice selectively bred for high-normal (MgH) or low (MgL) intracellular Mg(2+) were studied. Male MgH and MgL mice received aldosterone (350 mu g/kg per day, 3 weeks). SBP was elevated in MgL. Aldosterone increased blood pressure and albuminuria and increased urinary Mg(2+) concentration in MgH and MgL, with greater effects in MgL. Activity of renal TRPM6 and TRPM7 was lower in vehicle-treated MgL than MgH. Aldosterone increased activity of TRPM6 in MgH and inhibited activity in MgL. TRPM7 and paracellin-1 were unaffected by aldosterone. Aldosterone-induced albuminuria in MgL was associated with increased renal fibrosis, increased oxidative stress, activation of mitogen-activated protein kinases and nuclear factor-NF-kappa B and podocyte injury. Mg(2+) supplementation (0.75% Mg(2+)) in aldosterone-treated MgL normalized plasma Mg(2+), increased TRPM6 activity and ameliorated hypertension and renal injury. Hence, in a model of inherited hypomagnesemia, TRPM6 and TRPM7, but not paracellin-1, are downregulated. Aldosterone further decreased TRPM6 activity in hypomagnesemic mice, a phenomenon associated with hypertension and kidney damage. Such effects were prevented by Mg(2+) supplementation. Conclusion Amplified target organ damage in aldosterone-induced hypertension in hypomagnesemic conditions is associated with dysfunctional Mg(2+)-sensitive renal TRPM6 channels. Novel mechanisms for renal effects of aldosterone and insights into putative beneficial actions of Mg(2+), particularly in hyperaldosteronism, are identified. J Hypertens 29: 1400-1410 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
The role of alpha-tocopherol during nephrogenesis was investigated in rats subjected to maternal undernutrition, which reduces the number of nephrons. alpha-tocopherol (350 mg/kg, p.o.) was administered daily to well-nourished or malnourished Wistar dams during pregnancy, or to prenatal undernourished rats during lactation. The kidneys of 1- and 25-day-old offspring were removed to evaluate expression of angiotensin II (Ang II) and to correlate this with expression of proliferating cell nuclear antigen, alpha-smooth muscle actin, fibronectin and vimentin in the glomeruli and tubulointerstitial space. One-day-old prenatally undernourished rats had reduced expression of Ang II and of kidney development markers, and presented with an enlarged nephrogenic zone. Maternal administration of alpha-tocopherol restored the features of normal kidney development in undernourished rats. Twenty-five-day-old prenatally undernourished progeny had fewer glomeruli than the control group. Conversely, animals from mothers that received alpha-tocopherol during lactation presented with the same number of glomeruli and the same glomerular morphometrical profile as the control group. Analyzing the levels of thiobarbituric acid reactive substances in the liver in conjunction with kidney development markers, it is plausible that alpha-tocopherol had antioxidant and non-antioxidant actions. This study provides evidence that alpha-tocopherol treatment restored Ang II expression, and subsequently restored renal structural development.
Resumo:
Background. Cyclosporine A (CsA)-induced chronic nephrotoxicity is characterized by renal dysfunction and interstitial fibrosis. Early and progressive renal macrophage influx, correlating with latter interstitial fibrotic areas, has been associated with CsA treatment. This study investigated the role of macrophages, the nitric oxide (NO) pathway, and the oxidative stress on chronic CsA nephrotoxicity. Methods. The macrophages were depleted by clodronate liposomes. Animals were distributed into four groups: vehicle (olive oil for 21 days), CsA 7.5 mg/kg per day (21 days), CsA plus clodronate (5 mg/mL intraperitoneally on days -4, 1, 4, 11, and 18 of CsA treatment), or vehicle plus clodronate. On day 22, glomerular filtration rate, renal blood flow, renal tubulointerstitial fibrosis, CsA blood levels, serum malondialdehyde and renal tissue immunohistochemistry for macrophages, inducible NO synthase, transforming growth factor-beta, nuclear factor-k beta, alpha-smooth muscle actin, vimentin, and nitrotyrosine were assessed. Results. CsA-induced increase in the macrophage was prevented by clodronate. Macrophage depletion attenuated the reductions in the glomerular filtration rate and renal blood flow, the development of tubulointerstitial fibrosis, malondialdehyde increase and increases in nuclear factor-k beta, transforming growth factor-beta, vimentin, inducible NO synthase, and nitrotyrosine expression provoked by CsA. Clodronate did not affect alpha-smooth muscle actin expression and CsA blood levels. Conclusions. Renal macrophage influx plays an important role in CsA-induced chronic nephrotoxicity. The NO pathway and oxidative stress are likely mechanisms involved in the genesis of this form of renal injury.
Resumo:
Study objective: To compare the effects of ethinylestradiol (EE) and 17 beta-estradiol (E(2)) on nitric oxide (NO) production and protection against oxidative stress in human endothelial cell cultures. Design: Experimental study. Settings: Research laboratory. Material: Human ECV304 endothelial cell cultures. Intervention(s): The NO synthesis was determined by flow cytometry, and oxidative stress was determined by a cell viability assay, after exposure to hydrogen peroxide (H(2)O(2)) and stimulation of endothelial cells with EE at concentrations similar to those of a contraceptive containing 30 mu g EE. Main Outcome Measure(s): The effects of EE were compared with those of E(2) at concentrations similar to those occurring during the follicular phase. Result(s): Ethinylestradiol did not increase NO synthesis and did not protect cells against oxidative stress. The viability of the cells incubated with E(2) in combination with H(2)O(2) was greater than the viability obtained with H(2)O(2) only or with H(2)O(2) in combination with EE. The cells stimulated with E(2) presented a significant increase in NO production compared with control. Conclusion(s): In contrast to the effects of E(2), EE did not protect human ECV304 endothelial cells against oxidative stress and did not increase their production of NO. (Fertil Steril (R) 2010; 94: 1578-82. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Objective. To determine the prevalence of pelvic muscle tenderness in women with chronic pelvic pain (CPP) and to assess the importance of evaluating muscle tenderness in such women. Design. Observational study of 48 healthy female volunteers and 108 women with CPP, who were clinically evaluated for pelvic muscle tenderness by two researchers blinded to all clinical data. Results. The frequency of clinically detected pelvic muscle tenderness was significantly higher in women with CPP than in healthy volunteers (58.3% vs 4.2%, P < 0.001). Among women with CPP, those with pelvic muscle tenderness had higher Beck Depression Index scores (22 [6-42] vs 13 [3-39], P = 0.02) and higher rates of dyspareunia (63.5% [40/63] vs 28.9% [13/45], P < 0.004) and constipation (46.0% [29/63] vs 26.7% [12/45], P = 0.05) than those without pelvic muscle tenderness. Conclusion. Tenderness of pelvic muscles was highly prevalent among women with CPP and was associated with higher BDI scores and higher rates of dyspareunia and constipation. Determination of pelvic muscle tenderness may help in identifying women who require more intense treatment for CPP.