188 resultados para alpha-smooth muscle actin
Resumo:
Nicotine plays a role in smoking-associated cardiovascular diseases, and may upregulate matrix metalloproteinase (MMP)-2 and MMP-9. We examined whether nicotine induces the release of MMP-2 and MMP-9 by rat smooth muscle cells (SMC), and whether doxycycline (non-selective MMP inhibitor) inhibits the vascular effects produced by nicotine. SMC were incubated with nicotine 0, 50, and 150 nM for 48 h. MMP-2 and MMP-9 levels in the cell supernatants were determined by gelatin zymography. The acute changes in mean arterial pressure caused by nicotine 2 mu mol/kg (or saline) were assessed in rats pretreated with doxycycline (or saline). We also examined whether doxcycline (30 mg/Kg, i.p., daily) modifies the effects of nicotine (10 mg/kg/day; 4 weeks) on the endothelium-dependent relaxations of rat aortic rings. Aortic MMP-2 levels were assessed by gelatin zymography. Aortic gelatinolytic activity was assessed using a gelatinolytic activity kit. MMP-2 and MMP-9 levels increased in the supernatant of SMC cells incubated with nicotine 150 nM (P<0.05) but not with 50 nM. Nicotine (2 mu mol/kg) produced lower increases in the mean arterial pressure in rats pretreated with doxycycline than those found in rats pretreated with saline (26 +/- 4 vs. 37 +/- 4 mmHg, respectively; P<0.05). Nicotine impaired of the endothelium-dependent responses to acetylcholine, and treatment with doxycycline increased the potency (pD2) by approximately 25% (P<0.05). While we found no significant differences in aortic MMP-2 levels, nicotine significantly increased gelatinolytic activity (P<0.05). These findings suggest that nicotine produces cardiovascular effects involving MMPs. It is possible that MMPs inhibition may counteract the effects produced by nicotine. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The vesicourethral junction comprising the vesical trigone, is relevant in setting and positioning of the urinary bladder, along with the vesical neck, fixed by lateral ligaments of the bladder and tendinous arch of the pelvis fascia. Namely, the puboprostatic ligament (men) and the pubovesical (women). The circular set elastic fibers in this junction are important and valuable in the elasticity and plasticity of the area, allowing quick expansion and withdrawal with the flow of urine, and associated to smooth muscle tissue and nerve control form an important collective to maintain urinary continence. The objective of the present study is to describe the elastic system in the vesicouretral junction in relation to aging and its involvement in the states of urinary continence and incontinence, as well as the study of the vesicouretral junction in various age groups while evaluating with electron transmission microscopy. To carry out the study, 12 Wistar rats were used, divided into groups: neonate (4 animals), adult group (4 animals) and aged group (4 animals). Electron transmission microscopy with use of tanic acid technique associated to glutaraldehyde fixation, satisfactorily showed the extreme structural differences between mature elaunin and oxytalan fibers present between intercelular spaces and bundles of collagen fibers. The phases of elastogenesis in neonate animals and degradation of the elastic system of older animals were also evaluated.
Resumo:
Although angiotensin II-induced venoconstriction has been demonstrated in the rat vena cava and femoral vein, the angiotensin II receptor subtypes (AT(1) or AT(2)) that mediate this phenomenon have not been precisely characterized. Therefore, the present study aimed to characterize the pharmacological receptors involved in the angiotensin II-induced constriction of rat venae cavae and femoral veins, as well as the opposing effects exerted by locally produced prostanoids and NO upon induction of these vasomotor responses. The obtained results suggest that both AT(1) and AT(2) angiotensin II receptors are expressed in both veins. Angiotensin II concentration-response curves were shifted toward the right by losartan but not by PD 123319 in both the vena cava and femoral vein. Moreover, it was observed that both 10(-5) M indomethacin and 10(-4) M L-NAME improve the angiotensin II responses in the vena cava and femoral vein. In conclusion, in the rat vena cava and femoral vein, angiotensin II stimulates AT(1) but not AT(2) to induce venoconstriction, which is blunted by vasodilator prostanoids and NO. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Purpose of review Description of the progress about the vascular effects promoted by thyroid hormones. Recent findings Over the past few years, a number of studies have shown that in addition to genomic effects on blood vessels, thyroid hormones exert extranuclear nongenomic effects on vascular smooth muscle cells and endothelium. These nongenomic effects occur rapidly and do not involve thyroid hormone response elements-mediated transcriptional events. In this context, the genomic and nongenomic events promoted by thyroid hormones act in concert to control the vascular hemodynamic and regulate the cardiovascular function. Summary Considering the antiatherogenic property of thyroid hormones and the rapid effects produced by this molecule as a vasodilator, including that in the coronary bed, a better understanding of the molecular mechanisms involved in its action may contribute to the development of drugs that can be clinically used to increase the known benefits promoted by thyroid hormones in cardiovascular physiology.
Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes
Resumo:
Aims Thyroid hormone (TH) rapidly relaxes vascular smooth muscle cells (VSMCs). However, the mechanisms involved in this effect remain unclear. We hypothesize that TH-induced rapid vascular relaxation is mediated by VSMC-derived nitric oxide (NO) production and is associated with the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signalling pathway. Methods and results NO levels were determined using a NO-specific fluorescent dye (DAF-2) and nitrite (NO(2)) levels. Expression of NO synthase (NOS) isoforms and proteins of the PI3K/Akt pathway was determined by both western blotting and immunocytochemistry. Myosin light chain (MLC) phosphorylation levels were also investigated by western blotting. Exposure of cultured VSMCs from rat thoracic aortas to triiodothyronine (T3) resulted in a significant decrease of MLC phosphorylation levels. T3 also induced a rapid increase in Akt phosphorylation and increased NO production in a dose-dependent manner (0.001-1 mu M). VSMCs stimulated with T3 for 30 min showed an increase in the expression of all three NOS isoforms and augmented NO production, effects that were prevented by inhibitors of PI3K. Vascular reactivity studies showed that vessels treated with T3 displayed a decreased response to phenylephrine, which was reversed by NOS inhibition. These data suggest that T3 treatment induces greater generation of NO both in aorta and VSMCs and that this phenomenon is endothelium independent. In addition, these findings show for the first time that the PI3K/Akt signalling pathway is involved in T3-induced NO production by VSMCs, which occurs with expressive participation of inducible and neuronal NOS. Conclusion Our data strongly indicate that T3 causes NO-dependent rapid relaxation of VSMC and that this effect is mediated by the PI3K/Akt signalling pathway.
Resumo:
Pergher PS, Leite-Dellova D, de Mello-Aires M. Direct action of aldosterone on bicarbonate reabsorption in in vivo cortical proximal tubule. Am J Physiol Renal Physiol 296: F1185-F1193, 2009. First published February 18, 2009; doi:10.1152/ajprenal.90217.2008.-The direct action of aldosterone (10(-12) M) on net bicarbonate reabsorption (J(HCO3)(-)) was evaluated by stationary microperfusion of an in vivo middle proximal tubule (S2) of rat kidney, using H ion-sensitive microelectrodes. Aldosterone in luminally perfused tubules caused a significant increase in J(HCO3)(-) from a mean control value of 2.84 +/- 0.08 [49/19 (n degrees of measurements/n degrees of tubules)] to 4.20 +/- 0.15 nmol.cm(-2).s(-1) (58/10). Aldosterone perfused into peritubular capillaries also increased J(HCO3)(-), compared with basal levels during intact capillary perfusion with blood. In addition, in isolated perfused tubules aldosterone causes a transient increase of cytosolic free calcium ([Ca(2+)](i)), monitored fluorometrically. In the presence of ethanol ( in similar concentration used to prepare the hormonal solution), spironolactone (10(-6) M, a mineralocorticoid receptor antagonist), actinomycin D (10(-6) M, an inhibitor of gene transcription), or cycloheximide (40 mM, an inhibitor of protein synthesis), the J(HCO3)(-) and the [Ca(2+)](i) were not different from the control value; these drugs also did not prevent the stimulatory effect of aldosterone on J(HCO3)(-) and on [Ca(2+)](i). However, in the presence of RU 486 alone [10(-6) M, a classic glucocorticoid receptor (GR) antagonist], a significant decrease on J(HCO3)(-) and on [Ca(2+)](i) was observed; this antagonist also inhibited the stimulatory effect of aldosterone on J(HCO3)(-) and on [Ca(2+)](i). These studies indicate that luminal or peritubular aldosterone (10(-12) M) has a direct nongenomic stimulatory effect on J(HCO3)(-) and on [Ca(2+)](i) in proximal tubule and that probably GR participates in this process. The data also indicate that endogenous aldosterone stimulates J(HCO3)(-) in middle proximal tubule.
Resumo:
Leite-Dellova DC, Oliveira-Souza M, Malnic G, Mello-Aires M. Genomic and nongenomic dose-dependent biphasic effect of aldosterone on Na(+)/H(+) exchanger in proximal S3 segment: role of cytosolic calcium. Am J Physiol Renal Physiol 295: F1342-F1352, 2008. First published August 20, 2008; doi:10.1152/ajprenal.00048.2008.-The effects of aldosterone on the intracellular pH recovery rate (pHirr) via Na(+)/H(+) exchanger and on the [Ca(2+)](i) were investigated in isolated rat S3 segment. Aldosterone [10(-12), 10(-10), or 10(-8) M with 1-h, 15- or 2-min preincubation (pi)] caused a dose-dependent increase in the pHirr, but aldosterone (10(-6) M with 1-h, 15- or 2-min pi) decreased it (these effects were prevented by HOE694 but not by S3226). After 1 min of aldosterone pi, there was a transient and dose-dependent increase of the [Ca(2+)](i) and after 6-min pi there was a new increase of [Ca(2+)](i) that persisted after 1 h. Spironolactone, actinomycin D, or cycloheximide did not affect the effects of aldosterone (15 -or 2-min pi) but inhibited the effects of aldosterone (1-h pi) on pHirr and on [Ca(2+)](i). RU 486 prevented the stimulatory effect of aldosterone (10(-12) M, 15 -or 2-min pi) on both parameters and maintained the inhibitory effect of aldosterone (10(-6) M, 15- or 2-min pi) on the pHirr but reversed its stimulatory effect on the [Ca(2+)](i) to an inhibitory effect. The data indicate a genomic (1 h, via MR) and a nongenomic action (15 or 2 min, probably via GR) on [Ca(2+)](i) and on the basolateral NHE1 and are compatible with stimulation of the NHE1 by increases in [Ca(2+)](i) in the lower range (at 10(-12) M aldosterone) and inhibition by increases at high levels (at 10(-6) M aldosterone) or decreases in [Ca(2+)](i) (at 10(-6) M aldosterone plus RU 486).
Resumo:
The effect of ANG II on intracellular pH (pH(i)) recovery rate and AT(1) receptor translocation was investigated in transfected MDCK cells. The pHi recovery rate was evaluated by fluorescence microscopy using the fluorescent probe BCECF-AM. The human angiotensin II receptor isoform 1 (hAT(1)) translocation was analyzed by immunofluorescence and confocal microscope. Our data show that transfected cells in control situation have a pHi recovery rate of 0.219 +/- 0.017 pH U/min (n = 11). This value was similar to nontransfected cells [0.211 +/- 0.009 pH U/min (n = 12)]. Both values were significantly increased with ANG II (10(-9) M) but not with ANG II (10(-6) M). Losartan (10(-7) M) and dimethyl-BAPTA-AM (10(-7) M) decreased significantly the stimulatory effect of ANG II (10(-9) M) and induced an increase in Na+/H+ exchanger 1 (NHE-1) activity with ANG II (10(-6) M). Immunofluorescence studies indicated that in control situation, the hAT(1) receptor was predominantly expressed in cytosol. However, it was translocated to plasma membrane with ANG II (10(-9) M) and internalized with ANG II (10(-6) M). Losartan (10(-7) M) induced hAT(1) translocation to plasma membrane in all studied groups. Dimethyl-BAPTA-AM (10(-7) M) did not change the effect of ANG II (10(-9) M) on the hAT(1) receptor distribution but induced its accumulation at plasma membrane in cells treated with ANG II (10(-6) M). With ionomycin (10(-6) M), the receptor was accumulated in cytosol. The results indicate that, in MDCK cells, the effect of ANG II on NHE-1 activity is associated with ligand binding to AT(1) receptor and intracellular signaling events related to AT(1) translocation.
Resumo:
The aim of this study was to analyze the contribution of nitric oxide, prostacyclin and endothelium-dependent hyperpolarizing factor to endothelium-dependent vasodilation induced by acetylcholine in rat aorta from control and ouabain-induced hypertensive rats. Preincubation with the nitric oxide synthase inhibitor N-omega-nitro-L-arginine methyl esther (L-NAME) inhibited the vasodilator response to acetylcholine in segments from both groups but to a greater extent in segments from ouabain-treated rats. Basal and acetylcholine-induced nitric oxide release were higher in segments from ouabain-treated rats. Preincubation with the prostacyclin synthesis Inhibitor tranylcypromine or with the cyclooxygenase inhibitor indomethacin inhibited the vasodilator response to acetylcholine in aortic segments front both groups. The Ca(2+)-dependent potassium channel blocker charybdotoxin inhibited the vasodilator response to acetylcholine only In segments from control rats. These results indicate that hypertension induced by chronic ouabain treatment is accompanied by increased endothelial nitric oxide participation and impaired endothelium-dependent hyperpolarizing factor contribution In acetylcholine-induced relaxation. These effects might explain the lack of effect of ouabain treatment oil acetylcholine responses in rat aorta.
Resumo:
Maternal pancreatic islets undergo a robust increase of mass and proliferation during pregnancy, which allows a compensation of gestational insulin resistance. Studies have described that this adaptation switches to a low proliferative status after the delivery. The mechanisms underlying this reversal are unknown, but the action of glucocorticoids (GCs) is believed to play an important role because GCs counteract the pregnancy-like effects of PRL on isolated pancreatic islets maintained in cell culture. Here, we demonstrate that ERK1/2 phosphorylation (phospho-ERK1/2) is increased in maternal rat islets isolated on the 19th day of pregnancy. Phospho-ERK1/2 status on the 3rd day after delivery (L3) rapidly turns to values lower than that found in virgin control rats (CTL). MKP-1, a protein phosphatase able to dephosphorylate ERK1/2, is increased in islets from L3 rats. Chromatin immunoprecipitation assay revealed that binding of glucocorticoid receptor (GR) to MKP-1 promoter is also increased in islets from L3 rats. In addition, dexamethasone (DEX) reduced phospho-ERK1/2 and increased MKP-1 expression in RINm5F and MIN-6 cells. Inhibition of transduction with cycloheximide and inhibition of phosphatases with orthovanadate efficiently blocked DEX-induced downregulation of phospho-ERK1/2. In addition, specific knockdown of MKP-1 with siRNA suppressed the downregulation of phosphoERK1/2 and the reduction of proliferation induced by DEX. Altogether, our results indicate that downregulation of phospho-ERK1/2 is associated with reduction in proliferation found in islets of early lactating mothers. This mechanism is probably mediated by GC-induced MKP-1 expression.
Resumo:
Aims Glycosylation with beta-N-acetylglucosamine (O-GlcNAcylation) is one of the most complex post-translational modifications. The cycling of O-GlcNAc is controlled by two enzymes: UDP-NAc transferase (OGT) and O-GlcNAcase (OGA). We recently reported that endothelin-1 (ET-1) augments vascular levels of O-GlcNAcylated proteins. Here we tested the hypothesis that O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of the RhoA/Rho-kinase pathway. Methods and results Incubation of vascular smooth muscle cells (VSMCs) with ET-1 (0.1 mu M) produces a time-dependent increase in O-GlcNAc levels. ET-1-induced O-GlcNAcylation is not observed when VSMCs are previously transfected with OGT siRNA, treated with ST045849 (OGT inhibitor) or atrasentan (ET(A) antagonist). ET-1 as well as PugNAc (OGA inhibitor) augmented contractions to phenylephrine in endothelium-denuded rat aortas, an effect that was abolished by the Rho kinase inhibitor Y-27632. Incubation of VSMCs with ET-1 increased expression of the phosphorylated forms of myosin phosphatase target subunit 1 (MYPT-1), protein kinase C-potentiated protein phosphatase 1 inhibitor protein (protein kinase C-potentiated phosphatase inhibitor-17), and myosin light chain (MLC) and RhoA expression and activity, and this effect was abolished by both OGT siRNA transfection or OGT inhibition and atrasentan. ET-1 also augmented expression of PDZ-Rho GEF (guanine nucleotide exchange factor) and p115-Rho GEF in VSMCs and this was prevented by OGT siRNA, ST045849, and atrasentan. Conclusion We suggest that ET-1 augments O-GlcNAcylation and this modification contributes to increased vascular contractile responses via activation of the RhoA/Rho-kinase pathway.
Resumo:
The biological activity of the proline rich decapeptde Bj PRO 10c a processing product of the C type natriuretic peptide precursor protein, expressed in the brain and the venom gland of the pit viper Bothrops jararaca, was originally attributed to the inhibition of the somatic angiotensm converting enzyme activity with subsequent ant hypertensive effect However recent results suggest broader biological activity may also be involved in the cardiovascular effects of this peptide Here we show that Bj PRO 10c enhances and sustains the generation of nitric made (NO) by regulating argininosuccinate synthase activity and thereby velocity of the citrulline NO cycle Bj PRO 10c-mediated effects not restricted to the cardiovascular system since NO production was also induced in cells of astroglial origin Bj PRO 10c was internalized by C6 astroglioma cells where it induces NO production and upregulation of the citrulline NO cycle cells in a dose dependent fashion In view of that, astroglial cells function as L arginine pool for NO production in neighboring neurons, we suggest a regulatory function for Bj PRO-10c on the metabolism of this gaseous neurotransmitter in the CNS Moreover, proliferation of astroglial cells was reduced in the presence of Bj PRO 10c however, cell death was not induced Since NO donors have been studied for the treatment of solid cancers Bj PRO 10c may serve as structural model for developing drugs to improve the effects of cancer therapy based on the peptide`s ability to augment NO production (C) 2010 Elsevier B V All rights reserved
Resumo:
In recent years, reactive oxygen species (ROS) derived from the vascular isoforms of NADPH oxidase, Nox1, Nox2, and Nox4, have been implicated in many cardiovascular pathologies. As a result, the selective inhibition of these isoforms is an area of intense current investigation. In this study, we postulated that Nox2ds, a peptidic inhibitor that mimics a sequence in the cytosolic B-loop of Nox2, would inhibit ROS production by the Nox2-. but not the Noxl- and Nox4-oxidase systems. To test our hypothesis, the inhibitory activity of Nox2ds was assessed in cell-free assays using reconstituted systems expressing the Nox2-, canonical or hybrid Nox1- or Nox4-oxidase. Our findings demonstrate that Nox2ds, but not its scrambled control, potently inhibited superoxide (O(2)(center dot-)) production in the Nox2 cell-free system, as assessed by the cytochrome c assay. Electron paramagnetic resonance confirmed that Nox2ds inhibits O(2)(center dot-) production by Nox2 oxidase. In contrast, Nox2ds did not inhibit ROS production by either Nox1- or Nox4-oxidase. These findings demonstrate that Nox2ds is a selective inhibitor of Nox2-oxidase and support its utility to elucidate the role of Nox2 in organ pathophysiology and its potential as a therapeutic agent. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Extracellular signal-regulated kinase (ERK) 1/2 has been reported to play a role in vascular dysfunction associated with mineralocorticoid hypertension. We hypothesized that, compared with female rats, an upregulation of ERK1/2 signaling in the vasculature of male rats contributes to augmented contractile responses in mineralocorticoid hypertension. Uninephrectomized male and female Sprague-Dawley rats received desoxycorticosterone acetate (DOCA) pellets (200 mg per animal) and saline to drink for 3 weeks. Control uninephrectomized rats received tap water to drink. Blood pressure, measured by telemetry, was significantly higher in male DOCA rats (191 +/- 3 mm Hg) compared with female DOCA rats (172 +/- 7 mm Hg; n=5). DOCA treatment resulted in augmented contractile responses to phenylephrine in aorta (22 +/- 3 mN; n=6) and small mesenteric arteries (13 +/- 2 mN; n=6) from male DOCA rats versus uninephrectomized male rats (16 +/- 3 and 10 +/- 2 mN, respectively; P<0.05) and female DOCA rats (15 +/- 1 and 11 +/- 1 mN, respectively). ERK1/2 inhibition with PD-98059 (10 mu mol/L) abrogated increased contraction to phenylephrine in aorta (14 +/- 2 mN) and small mesenteric arteries (10 +/- 2 mN) from male DOCA rats, without any effects in arteries from male uninephrectomized or female animals. Compared with the other groups, phosphorylated ERK1/2 levels were increased in the aorta from male DOCA rats, whereas mitogen-activated protein kinase phosphatase 1 expression was decreased. Interleukin-10 plasma levels, which positively regulate mitogen-activated protein kinase phosphatase 1 activity, were reduced in male DOCA-salt rats. We speculate that augmented vascular reactivity in male hypertensive rats is mediated via activation of the ERK1/2 pathway. In addition, mitogen-activated protein kinase phosphatase 1 and interleukin 10 play regulatory roles in this process. (Hypertension. 2010; 55: 172-179.)
Resumo:
The calcium-dependent proline-rich tyrosine kinase (Pyk2), a nonreceptor protein activated by tyrosine phosphorylation, links G protein-coupled receptors to vascular responses. We tested the hypothesis that enhanced vascular reactivity in deoxycorticosterone acetate (DOCA)-salt hypertensive mice is due to increased activation of Pyk2. Aorta and small mesenteric arteries from DOCA-salt and uninephrectomized (UNI) male C57B1/6 mice were used. Systolic blood pressure (mm Hg) was higher in DOCA (126 +/- 3) vs. UNI (100 +/- 4) mice. Vascular responses to phenylephrine (1 nM to 100 mu M) were greater both in aorta and small mesenteric arteries from DOCA-salt than UNI, but treatment with Tyrphostin A-9 (0.1 mu M, Pyk2 inhibitor) abolished the difference among the groups. Pyk2 levels, as well as phospho-Pyk2(Tyr402), paxillin, and phospho-paxillin(Tyr118) were increased in DOCA-salt aorta. Incubation of vessels with Tyrphostin A-9 restored phosphorylation of Pyk2 and paxillin. Increased activation of Pyk2 contributes to increased vascular contractile responses in DOCA-salt mice. J Am Soc Hypertens 2008;2(6): 431-438. (C) 2008 American Society of Hypertension. All rights reserved.