185 resultados para Fiber surface
Resumo:
Objective. To evaluate the effect of two additives, aldehyde or diketone, on the wear, roughness and hardness of bis-GMA-based composites/copolymers containing TEGDMA, propoxylated bis-GMA (CH(3)bis-GMA) or propoxylated fluorinated bis-GMA (CF(3)bis-GMA). Methods. Fifteen experimental composites and 15 corresponding copolymers were prepared combining bis-GMA and TEGDMA, CH3bis-GMA or CF3bis-GMA, with aldehyde (24mol% and 32 mol%) or diketone (24 mol% and 32 mol%) totaling 30 groups. For composites, hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%) was added to monomer mixtures. Photopolymerization was affected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Wear (W) test was conducted in a toothbrushing abrasion machine (n = 6) and quantified using a profilometer. Surface roughness (R) changes, before and after abrasion test, were determined using a rugosimeter. Microhardness (H) measurements were performed for dry and wet samples using a Knoop microindenter (n = 6). Data were analyzed by one-way ANOVA and Tukey`s test (alpha = 0.05). Results. Incorporation of additives led to improved W and H values for bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA systems. Additives had no significant effect on the W and H changes of bis-GMA/CF(3)bis-GMA. With regard to R changes, additives produced decreased values for bis-GMA/CH3bis-GMA and bis-GMA/CF3bis-GMA composites. Bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA copolymers with additives became smoother after abrasion test. Significance. The findings correlate with additives ability to improve degree of conversion of some composites/copolymers thereby enhancing mechanical properties. Published by Elsevier Ltd on behalf of Academy of Dental Materials
Resumo:
This study evaluated the fracture resistance of endodontically treated teeth restored with prefabricated carbon fiber posts and varying quantities of coronal dentin. Sixty freshly extracted upper canines were randomly divided into groups of 10 teeth each. The specimens were exposed to 250,000 cycles in a controlled chewing simulator. All intact specimens were subjected to a static load (N) in a universal testing machine at 45 degrees to the long axis. Data were analyzed by 1-way analysis of variance and Tukey test (alpha = .05). Significant differences (P < .001) were found among the mean fracture forces of the test groups (positive control, 0 mm, 1 mm, 2 mm, 3 mm, and negative control groups: 1022.82 N, 1008.22 N, 1292.52 N, 1289.19 N, 1255.38 N, and 1582.11, respectively). These results suggested that the amount of coronal dentin did not significantly increase the fracture resistance of endodontically treated teeth restored with prefabricated carbon fiber post and composite resin core. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:e52-e57)
Resumo:
Objectives. To test the null hypothesis that continuity of resin cement/dentin interfaces is not affected by location along the root canal walls or water storage for 3 months when bonding fiber posts into root canals. Methods. Fiber posts were luted to bovine incisors using four resinous luting systems: Multilink, Variolink II, Enforce Dual and Enforce PV. After cementation, roots were longitudinally sectioned and epoxy resin replicas were prepared for SEM analysis (baseline). The original halves were immersed in solvent, replicated and evaluated. After 3 months water storage and a second solvent immersion, a new set of replicas were made and analyzed. The ratio (%) between the length (mm) of available bonding interface and the actual extension of bonded cement/dentin interface was calculated. Results. Significant lower percent values of bond integrity were found for Multilink (8.25%) and Variolink 11 (10.08%) when compared to Enforce Dual (25.11%) and Enforce PV (27.0%) at baseline analysis. The same trend was observed after immersion in solvent, with no significant changes. However, bond integrity was significantly reduced after 3 months water storage and a second solvent immersion to values below 5% (Multilink = 3.31%, Variolink=1.87%, Enforce Dual=1.20%, and Enforce PV=0.75%). The majority of gaps were depicted at the apical and middle thirds at baseline and after immersion in solvent. After 3 months, gaps were also detected at the cervical third. Significance. Bond integrity at the cement/dentin interface was surprisingly low after cementation of fiber posts to root canals with all resin cements. That was not significantly altered after immersion in solvent, but was further compromised after 3 months water storage. Gaps were mainly seen at middle and apical thirds throughout the experiment and extended to the cervical third after water storage for 3 months. Bond integrity of fiber posts luted to root canals was affected both by location and water storage. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: This study examined the retention of solvents within experimental HEMA/solvent primers after two conditions for solvent evaporation: from a free surface or from dentine surface. Methods: Experimental primers were prepared by mixing 35% HEMA with 65% water, methanol, ethanol or acetone (v/v). Aliquots of each primer (50 mu l) were placed on glass wells or they were applied to the surface of acid-etched dentine cubes (2 mm x 2 mm x 2 mm) (n = 5). For both conditions (i.e. from free surface or dentine cubes), change in primers mass due to solvent evaporation was gravimetrically measured for 10 min at 51% RH and 21 degrees C. The rate of solvent evaporation was calculated as a function of loss of primers mass (%) over time. Data were analysed by two-way ANOVA and Student-Newman-Keuls (p < 0.05). Results: There were significant differences between solvent retention(%) and evaporation rate (%/min) depending on the solvent present in the primer and the condition for evaporation (from free surface or dentine cubes) (p < 0.05). For both conditions, the greatest amount of retained solvent was observed for HEMA/water primer. The rate of solvent evaporation for HEMA/acetone primer was almost 2- to 10-times higher than for HEMA/water primer depending whether evaporation occurred, respectively, from a free surface or dentine cubes. The rate of solvent evaporation varied with time, being in general highest at the earliest periods. Conclusions: The rate of solvent evaporation and its retention into HEMA/solvent primers was influenced by the type of the solvent and condition allowed for their evaporation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To evaluate the effects of storage condition and duration on the resistance to fracture of different fiber post systems (and to morphologically assess the post structure before and after storage. Methods: Three types of fiber posts (DT Light Post, GC Post, FRC Postect Plus) were divided in different groups (n=12) according to the storage condition (dry at 37 degrees C; saline water at 37 degrees C; mineral oil at 37 degrees C and storage inside the roots of extracted human teeth immersed in saline water at 37 degrees C and duration (6, 12 months). A universal testing machine loading at a 90 degrees angle was employed for the three-point bending test. The test was carried out until fracture of the post. A 3-way ANOVA and Tukey`s test (alpha= 0.05) were used to compare the effect of the experimental factors on the fracture strength. Two posts of each group were observed before and after the storage using a scanning electron microscope. Results: Storage condition and post type had a significant effect on post fracture strength (P< 0.05). The interaction between these factors was significant (P< 0.05). Water storage significantly decreased the fracture strength, regardless of the post type and the storage duration. Storage inside roots, in oil, and at dry conditions did not significantly affect post fracture strength. SEM micrographs revealed voids between fibers and resin matrix for posts stored in water. Posts stored under the other conditions showed a compact matrix without porosities. (Am J Dent 2009;22:366-370).
Resumo:
Purpose: To evaluate the cement thickness around oval and circular posts luted in oval post spaces prepared with different drills/tips. Methods: Extracted premolars were endodontically treated and obturated, then randomly divided into three groups (n = 5) according to the tips/drills used for post-space preparation and to the type of fiber post luted: medium grit oval tip + oval posts, fine grit oval tip + oval posts, Mtwo Post File drill + circular posts. The specimens were sectioned in horizontal slices; one slice per canal third was chosen for each post-space, resulting in three slices for each specimen. The distances between the canal wall and the post perimeter were measured on SEM images of each slice. Results: The fine grit tip + oval post group obtained statistically significant lower cement thicknesses than the other groups (P < 0.05), in particular in the apical third. The MtwoPF + circular post group showed the highest cement thickness, comparable to that of the medium tip + oval post group. A good post fitting in oval-shaped canals can be obtained using a fine grit oval tip combined with oval posts. (Am J Dent 2009;22:290-294).
Resumo:
Purpose: The study evaluates the behavior of different adhesive systems and resin cements in fiber post placement, with the intent to clarify the possible role of unfilled resin as a luting material for fiber posts. Materials and Methods: Two luting agents (Dual-Link and Unfilled Resin) for cementing fiber posts into root canals were applied either with All-Bond 2 or One-Step Plus, or without an adhesive system, and challenged with the push-out test. Slices of roots restored with posts were loaded until post segment extrusion in the apical-coronal direction. Failure modes were analyzed under SEM. Results: Push-out strength was significantly influenced by the luting agent (p < 0.05), but not by the bonding strategy (p > 0.05). The best results were obtained in combination with Unfilled Resin with One-Step Plus. Dual-Link groups failed mainly cohesively within the cement, while Unfilled Resin demonstrated more adhesive fracture at the post interface. Conclusion: The results of this study support the hypothesis that adhesive unfilled resin application is essential for achieving high bond strength to radicular dentin.
Resumo:
The aim of the present study was to evaluate the in vitro osteogenic potential of subcultured human osteoblastic cells derived from alveolar bone on a titanium (Ti) surface produced by an anodized alkali treatment (BSP-AK). Primary osteoblastic cells were subcultured on BSP-AK and machined Ti discs (control) and grown for periods of up to 21 days under osteogenic conditions. Morphologic and biochemical methods were used to assess important parameters of in vitro bone-like tissue formation. Although no major differences were observed between the BSP-AK and the control Ti surface in terms of cell attachment and mineralized matrix formation, a significant increase in cell population, ALP activity, and collagen content was detected in cultures on BSP-AK surface. Our results demonstrate that human osteoblastic cells are sensitive to the BSP-AK-modified Ti surface during the transitional stage between the end of the proliferative phase and the onset of the differentiation /matrix maturation ones. Together with the good mechanical properties exhibited by the Ca- and P- coating, our findings suggest that BSP-AK treatment could be useful for the development of a new surface for dental and orthopedic implants. (c) 2008 Wiley Periodicals, Inc.J Biomed Mater Res 88A: 841-848, 2009
Resumo:
The aim of this study was to evaluate the development of the osteoblastic phenotype in human alveolar bone-derived cells grown on collagen type I-coated titanium (Ti) surface (Col-Ti) obtained by plasma deposition acrylic acid grafting compared with machined Ti (M-Ti). Osteoblastic cells were cultured until subconfluence and subcultured on Col-Ti and M-Ti for periods of up to 21 days. Cultures grown on Col-Ti and M-Ti exhibited similar cell morphology. Cell adhesion, total protein content, and alkaline phosphatase (ALP) activity were not affected by Ti surface modification in all evaluated periods. Growth analyses indicated that there were significantly more cells in cultures grown on Col-Ti at day 3. Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteoprotegerin (OPG) mRNA expression of cells subcultured on Col-Ti was higher, whereas collagen type I (COL) was lower compared with M-Ti. Ti surface modification neither affected the osteocalcin (OC), ALP and receptor activator of NF-kappa B ligand (RANKL) mRNA expression nor the calcium content extracted from mineralized matrix. These results demonstrated that Col-Ti favours cell growth during the proliferative phase (day 3) and osteoblastic differentiation, as demonstrated by changes in mRNA expression profile during the matrix mineralization phase (day 14), suggesting that this Ti surface modification may affect the processes of bone healing and remodelling. To cite this article:Assis AF, Beloti MM, Crippa GE, de Oliveira PT, Morra M, Rosa AL. Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface.Clin. Oral Impl. Res. 20, 2009; 240-246.doi: 10.1111/j.1600-0501.2008.01641.x.
Resumo:
In the present study we characterized titanium (Ti) surfaces submitted to different treatments and evaluated the response of osteoblasts derived from human alveolar bone to these surfaces. Five different surfaces were evaluated: ground (G), ground and chemical etched (G1-HF for 60 s), sand blasted (SB-Al2O3 particles 65 pm), sand blasted and chemical etched (SLA1-HF for 60 s and SLA2-HF for 13 s). Surface morphology was evaluated under SEM and roughness parameters by contact scanning instrument. The presence of Al2O3 was detected by EDS and the amount calculated by digital analyses. Osteoblasts, were cultured on these surfaces and it was evaluated: cell adhesion, proliferation, and viability, alkaline phosphatase activity, total protein content, and matrix mineralization formation. Physical and chemical treatments produced very different surface morphologies. Al2O3 residues were detected on SB and SLA2 surfaces. Only matrix mineralization formation was affected by different surface treatments, being increased on rough surface (SLA1) and reduced on surface with high amount of Al2O3 residues (SB). On the basis of these findings, it is possible to conclude that high concentration of residual Al2O3 negatively interfere with the process of matrix mineralization formation in contact with Ti implant surfaces. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 87A: 588-597, 2008
Resumo:
The aim of this study was to analyze the immediate effect of resilient splints through surface electromyography testing and to compare the findings with the electromyographic profiles of asymptomatic subjects. The participants were 30 subjects, 15 patients with TMD (TMD Group) and 15 healthy subjects (Control Group), classified according to Research Diagnostic Criteria (RDC/TMD) Axis I. A resilient occlusal splint was made for each patient in the TMD Group from two mm thick silicon to cover all teeth. The EMG examination was performed before and immediately after installing the splint. Three tests were performed as follows: 1. Maximum Voluntary Contraction (MVC) using cotton rolls (standards test); 2. MVC in maximal intercuspation position; and 3. MVC with the splint in position. The EMG signal was recorded for five seconds. EMG indices were calculated to assess muscle symmetry, jaw torque, and impact. There was a statistically significant difference when comparing the results among the study groups. The symmetry index values in the Control Group were higher than the TMD Initial Group and similar to the TMD Group after the installation of the splint. The index values of torque were higher in TMD Initial Group when compared with the Controls. Impact values were lower than normal values in the TMD Initial Group and restored upon installation of the splint. The resilient occlusal splints may be used as complementary or adjunctive treatment of temporomandibular disorders.
Resumo:
Background: There are no reported studies comparing different parameter settings of the CO(2) laser and irradiation direction considering their effect on the morphology of radicular dentine surface. Purpose: To evaluate the alterations of radicular dentine (cervical, middle, and apical thirds) irradiated with CO(2) laser at different potencies and irradiation directions. Study Design: Roots of 35 canines were prepared and randomly distributed according to the laser potency: GI: no laser treatment (control) (n = 5); GII, 2 W (n = 10); GIII: 4 W (n = 10); GIV: 6 W (n = 10). Each group (excepting GI) was divided in two subgroups according to the irradiation distance (n = 5): (A) parallel and (B) perpendicular to the root canal walls. The roots were splited longitudinally and analyzed by scanning electron microscopy in a qualiquatitative way. The scores were submitted to Kruskal-Wallis and Dunn`s tests. Results: No significant statistical differences were observed among root canal thirds (P > 0.05). The specimens irradiated with 2 W were statistically different (P < 0.05) from those irradiated with 4 and 6 W, which were statistically similar between themselves (P > 0.05). With 2, 4, and 6 W at in parallel irradiation and 2 W in perpendicular direction, the surface showed a fissured aspect. With 4 W in perpendicular direction and 6 W in parallel and perpendicular direction, surface was modified by laser action and exhibited fused areas. Conclusions: The intensity of the effects is dependent on the laser-irradiation dosimetries. Alterations were more intense when higher parameters were used. Microsc. Res. Tech. 72:737-743, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Introduction: This study evaluated the bond strength of translucent fiber posts to experimentally weakened radicular dentin restored with composite resin and polymerized with different light-exposure time. Methods: Roots of 60 maxillary incisors were used. Twenty-four hours after obturation, the filling materials of root canals were removed to a depth of 12 mm, and 4 groups were randomly formed. In 3 groups, root dentin was flared to produce a space between fiber post and canal walls. In the control group, the roots were not experimentally weakened. The flared roots were bulk restored with composite resin, which was light-activated through the translucent post for 40, 80, or 120 seconds. Posts were cemented, and after 24 hours, all roots were sectioned transversely in the coronal, middle, and apical regions, producing 1-mm-thick slices. Push-out test was performed, and failure modes were observed. Results The quantitative analysis showed significant statistical difference only among groups (P <.001). Comparing the weakened/restored groups, composite light-exposure time did not influence the results. Overall, adhesive failures occurred more frequently than other types of failures. Cohesive failures occurred only in the weakened/restored roots. Conclusions Intracanal root restoration with composite resin and translucent fiber posts provided similar or higher bond strength to dentin than the control group, regardless of the light-exposure time used for polymerization. (J Endod 2009;35:1034-1039)
Resumo:
Statement of problem. Dental fractures can occur in endodontically treated teeth restored with posts. Purpose. The purpose of this study was to evaluate the in vitro fracture resistance of roots with glass-fiber and metal posts of different lengths. Material and methods. Sixty endodontically treated maxillary canines were embedded in acrylic resin, except for 4 mm of the cervical area, after removing the clinical crowns. The post spaces were opened with a cylindrical bur at low speed attached to a surveyor, resulting in preparations with lengths of 6 mm (group 6 mm), 8 mm (group 8 mm), or 10 mm (group 10 mm). Each group was divided into 2 subgroups according to the post material: cast post and core or glass-fiber post (n=30). The posts were luted with dual-polymerizing resin cement (Panavia F). Cast posts and cores of Co-Cr (Resilient Plus) crowns were made and cemented with zinc phosphate. Specimens were subjected to increasing compressive load (N) until fracture. Data were analyzed with 2-way ANOVA and the Tukey-Kramer test (alpha=.05). Results. The ANOVA analysis indicated significant differences (P<.05) among the groups, and the Tukey test revealed no significant difference among the metal posts of 6-mm length (26.5 N +/- 13.4), 8-mm length (25.2 N +/- 13.9), and 10-mm length (17.1 N +/- 5.2). Also, in the glass-fiber post group, there was no significant difference when posts of 8-mm length (13.4 N +/- 11.0) were compared with the 6-mm (6.9 N +/- 4.6) and 10-mm (31.7 N +/- 13.1) groups. The 10-mm-long post displayed superior fracture resistance, and the 6-mm-long post showed significantly lower mean values (P<.001). Conclusions. Within the limitations of this study, it was concluded that the glass-fiber post represents a viable alternative to the cast metal post, increasing the resistance to fracture of endodontically treated canines. (J Prosthet Dent 2009;101:183-188)
Resumo:
Objective: To assess the temperature variation in the cervical, middle and apical thirds of root external wall, caused by 980-nm diode laser irradiation with different parameters. Methods: The roots of 90 canines, had their canals instrumented and were randomly distributed into 3 groups (n = 30) according to the laser potency (1.5 W, 3.0 W and 5.0 W). Each group was subdivided into 3 (n = 10) according to the frequency (CM, 100 Hz and 1000 Hz), and each subgroup divided into 2 (n = S): dried canal or filled with distilled water. The maximum temperature values were collected by 3 thermocouples located at each third of the root external wall and recorded by digital thermometers. Results: The groups irradiated in the continuous mode (CM) presented the highest values (11.82 +/- 5.78), regardless of the canals were dry or not, which were statistically different (p < 0.01) from those obtained with 100 Hz (6.22 +/- 3.64) and 1000 Hz (6.00 +/- 3.36), which presented no statistical difference between them (p > 0.01). The groups irradiated with 5.0 W presented the greatest temperature variation (12.15 +/- 5.14), followed by 3.0 W (7.88 +/- 3.92) and 1.5 W (4.02 +/- 2.16), differing between them (p < 0.01). The cervical third of the root presented the highest temperature rises (9.68 +/- 5.80), followed by the middle (7.66 +/- 4.87) and apical (6.70 +/- 4.23), with statistical difference among them (p < 0.01). After 30 s from the end of irradiation, all the specimens presented temperature variation lower than 10 degrees C. Conclusions: Application of 980-nm diode laser in the root, at 1.5 W in all operating modes, and 3.0 W, in the pulsed mode, for 20 s, can safely be used in endodontic treatment, irrespective of the presence of humidity. (C) 2008 Elsevier Ltd. All rights reserved.