195 resultados para Bagasse, Thermal degradation, Combustion, Kinetics, Thermogravimetry
Resumo:
High velocity oxi-fuel (HVOF) thermal spray process has been used in order to deposit a new alloy known as multicomponent white cast iron. The coatings were characterized in terms of macrostructure, phase composition, porosity and hardness. Coating characteristics and properties were found to be dependent on the particles size range, spray distance, gases flow rate and oxygen to propane ratio. For set of parameters utilized in this job a narrow particle size range between 20 and 45 gm with a spray distance of 200 mm and oxygen to propane ratio of 4.6 are the preferred coating parameters. Coating porosity of 0.9% and hardness of 766 HV were obtained under these conditions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This article presents a kinetic evaluation of froth flotation of ultrafine coal contained in the tailings from a Colombian coal preparation plant. The plant utilizes a dense-medium cyclones and spirals circuit. The tailings contained material that was 63% finer than 14 mu m. Flotation tests were performed with and without coal ""promoters"" (diesel oil or kerosene) to evaluate the kinetics of flotation of coal. It was found that flotation rates were higher when no promoter was added. Different kinetic models were evaluated for the flotation of the coal from the tailings, and it was found that the best fitted model was the classical first-order model.
Resumo:
Compliant mechanisms can achieve a specified motion as a mechanism without relying on the use of joints and pins. They have broad application in precision mechanical devices and Micro-Electro Mechanical Systems (MEMS) but may lose accuracy and produce undesirable displacements when subjected to temperature changes. These undesirable effects can be reduced by using sensors in combination with control techniques and/or by applying special design techniques to reduce such undesirable effects at the design stage, a process generally termed ""design for precision"". This paper describes a design for precision method based on a topology optimization method (TOM) for compliant mechanisms that includes thermal compensation features. The optimization problem emphasizes actuator accuracy and it is formulated to yield optimal compliant mechanism configurations that maximize the desired output displacement when a force is applied, while minimizing undesirable thermal effects. To demonstrate the effectiveness of the method, two-dimensional compliant mechanisms are designed considering thermal compensation, and their performance is compared with compliant mechanisms designs that do not consider thermal compensation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This study presents a decision-making method for maintenance policy selection of power plants equipment. The method is based on risk analysis concepts. The method first step consists in identifying critical equipment both for power plant operational performance and availability based on risk concepts. The second step involves the proposal of a potential maintenance policy that could be applied to critical equipment in order to increase its availability. The costs associated with each potential maintenance policy must be estimated, including the maintenance costs and the cost of failure that measures the critical equipment failure consequences for the power plant operation. Once the failure probabilities and the costs of failures are estimated, a decision-making procedure is applied to select the best maintenance policy. The decision criterion is to minimize the equipment cost of failure, considering the costs and likelihood of occurrence of failure scenarios. The method is applied to the analysis of a lubrication oil system used in gas turbines journal bearings. The turbine has more than 150 MW nominal output, installed in an open cycle thermoelectric power plant. A design modification with the installation of a redundant oil pump is proposed for lubricating oil system availability improvement. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The combined-cycle gas and steam turbine power plant presents three main pieces of equipment: gas turbines, steam turbines and heat recovery steam generator (HRSG). In case of HRSG failure the steam cycle is shut down, reducing the power plant output. Considering that the technology for design, construction and operation of high capacity HRSGs is quite recent its availability should be carefully evaluated in order to foresee the performance of the power plant. This study presents a method for reliability and availability evaluation of HRSGs installed in combined-cycle power plant. The method`s first step consists in the elaboration of the steam generator functional tree and development of failure mode and effects analysis. The next step involves a reliability and availability analysis based on the time to failure and time to repair data recorded during the steam generator operation. The third step, aiming at availability improvement, recommends the fault-tree analysis development to identify components the failure (or combination of failures) of which can cause the HRSG shutdown. Those components maintenance policy can be improved through the use of reliability centered maintenance (RCM) concepts. The method is applied on the analysis of two HRSGs installed in a 500 MW combined-cycle power plant. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An investigation was conducted on pollutants emitted from steady-state, steady-flow gasification and combustion of polyethylene (PE) in a two-stage furnace. The polymer, in pulverized form, was first pyrolyzed at 1000 degrees C, and subsequently, its gaseous pyrolyzates were burned, upon mixing with air at high temperatures (900-1100 degrees C). The motivation for this indirect type of burning PE was to attain nominally premixed combustion of the pyrolyzate gases with air, thereby achieving lower pollutant emissions than those emanating from the direct burning of the solid PE polymer. This work assessed the effluents of the two-stage furnace and examined the effects of the combustion temperature, as well as the polymer feed rate and the associated fuel/air equivalence ratio (0.3 < phi < 1.4). It was found that, whereas the yield of pyrolysis gas decreased with an increasing polymer feed rate, its composition was nearly independent of the feed rate. CO2 emissions peaked at an equivalence ratio near unity, while the CO emissions increased with an increasing equivalence ratio. The total light volatile hydrocarbon and semivolatile polycyclic aromatic hydrocarbon (PAH) emissions of combustion increased with an increasing equivalence ratio. The generated particulates were mostly submicrometer in size. Overall, PAH and soot emissions from this indirect burning of PE were an order of magnitude lower than corresponding emissions from the direct burning of the solid polymer, obtained previously in this laboratory using identical sampling and analytical techniques. Because pyrolysis of this polymer requires a nominal heat input that amounts to only a diminutive fraction of the heat released during its combustion, implementation of this technique is deemed advantageous.
Resumo:
This work addressed the production of carbon nanomaterials (CNMs) by catalytic conversion of wastes from the bioethanol industry, in the form of either sugarcane bagasse or corn-derived distillers dried grains with solubles (DDGS). Both bagasse and DDGS were pyrolysed at temperatures in the range of 600-1000 degrees C. The pyrolyzate gases were then used as CNM growth agents by chemical vapor deposition on stainless steel meshes, serving as both catalysts and substrates. CNM synthesis temperatures of 750-1000 degrees C were explored, and it was determined that their growth was most pronounced at 1000 degrees C. The nanomaterials produced from pyrolysis of bagasse were in the form of long, straight, multi-wall nanotubes with smooth walls and axially uniform diameters. Typical lengths were circa 50 mu m and diameters were in the range of 20-80 nm. The nanomaterials produced from pyrolysis of DDGS were in the form of long, entangled, rope-like structures with rugged walls, and axially non-uniform diameters. Typical diameters were in the range of 100-300 nm and their lengths were in the tens of microns. This process also produces a bio-syngas byproduct that is enriched in hydrogen. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Coatings based on NiCrAlC intermetallic based alloy were applied on AISI 316L stainless steel substrates using a high velocity oxygen fuel torch. The influence of the spray parameters on friction and abrasive wear resistance were investigated using an instrumented rubber wheel abrasion test, able to measure the friction forces. The corrosion behaviour of the coatings were studied with electrochemical techniques and compared with the corrosion resistance of the substrate material. Specimens prepared using lower O(2)/C(3)H(8) ratios showed smaller porosity values. The abrasion wear rate of the NiCrAlC coatings was much smaller than that described in the literature for bulk as cast materials with similar composition and one order of magnitude higher than bulk cast and heat treated (aged) NiCrAlC alloy. All coatings showed higher corrosion resistance than the AISI 316L substrate in HCl (5%) aqueous solution at 40 degrees C.
Resumo:
In this work, the main factors affecting the rheological behavior of polyethylene terephtalate (PET) in the linear viscoelastic regime (water content, time delay before test, duration of experiment, and temperature) were accessed. Small amplitude oscillatory shear tests were performed after different time delays ranging from 300 to 5000 s for samples with water contents ranging from 0.02 to 0.45 wt %. Time sweep tests were carried out for different durations to explain the changes undergone by PET before and during small amplitude oscillatory shear measurements. Immediately after the time sweep tests, the PET samples were removed from the rheometer, analyzed by differential scanning calorimetry and their molar mass was obtained by viscometry analysis. It was shown that for all the samples, the delay before test and residence time within the rheometer (i.e. duration of experiment) result in structural changes of the PET samples, such as increase or decrease of molar mass, broadening of molar mass distribution, and branching phenomena. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 3525-3533, 2010
Resumo:
Nanocomposite membranes containing polysulfone (PSI) and sodium montmorillonite from Wyoming (MMT) were prepared by a combination of solution dispersion and the immersion step of the wet-phase inversion method. The purpose was to study the MMT addition with contents of 0.5 and 3.0 mass% MMT in the preparation of nanocomposite membranes by means of morphology, thermal, mechanical and hydrophilic properties of nanocomposite membranes and to compare these properties to the pure PSf membrane ones. Small-angle X-ray diffraction patterns revealed the formation of intercalated clay mineral layers in the PSf matrix and TEM images also presented an exfoliated structure. A good dispersion of the clay mineral particles was detected by SEM images. Tensile tests showed that both elongation at break and tensile strength of the nanocomposites were improved in comparison to the pristine PSf. The thermal stability of the nanocomposite membranes, evaluated by onset and final temperatures of degradation, was also enhanced. The hydrophilicity of the nanocomposite membranes, determined by water contact angle measurements, was higher; therefore, the MMT addition was useful to produce more hydrophilic membranes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The mechanical properties (yield stress, ultimate tensile stress and elongation) of alloy 20Cr32Ni + Nb subject to isochronal aging at temperatures between 670 and 820 degrees C for 200 h were investigated using samples extracted from a centrifugally cast tube. The results confirm the occurrence of embrittlement in the aged samples, with maximum embrittlement observed around 770 degrees C without significant gain in strength. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Polyurethane composites reinforced with curaua fiber at 5, 10 and 20% mass/mass proportions were prepared by using the conventional melt-mixing method. The influence of curaua fibers on the thermal behavior and polymer cohesiveness in polyurethane matrix was evaluated by dynamic mechanical thermal analysis (DMTA) and by differential scanning calorimetry (DSC). This specific interaction between the fibers and the hard segment domain was influenced by the behavior of the storage modulus E` and the loss modulus EaEuro(3) curves. The polyurethane PU80 is much stiffer and resistant than the other composites at low temperatures up to 70A degrees C. All samples were thermoplastic and presented a rubbery plateau over a wide temperature range above the glass transition temperature and a thermoplastic flow around 170A degrees C.
Resumo:
The kinetics of the ethoxylation of fatty alcohols catalyzed by potassium hydroxide was studied to obtain the rate constants for modeling of the industrial process. Experimental data obtained in a lab-scale semibatch autoclave reactor were used to evaluate kinetic and equilibrium parameters. The kinetic model was employed to model the performance of an industrial-scale spray tower reactor for fatty alcohol ethoxylation. The reactor model considers that mass transfer and reaction occur independently in two distinct zones of the reactor. Good agreement between the model predictions and real data was found. These findings confirm the reliability of the kinetic and reactor model for simulating fatty alcohol ethoxylation processes under industrial conditions.
Resumo:
In this study, the concept of cellular automata is applied in an innovative way to simulate the separation of phases in a water/oil emulsion. The velocity of the water droplets is calculated by the balance of forces acting on a pair of droplets in a group, and cellular automata is used to simulate the whole group of droplets. Thus, it is possible to solve the problem stochastically and to show the sequence of collisions of droplets and coalescence phenomena. This methodology enables the calculation of the amount of water that can be separated from the emulsion under different operating conditions, thus enabling the process to be optimized. Comparisons between the results obtained from the developed model and the operational performance of an actual desalting unit are carried out. The accuracy observed shows that the developed model is a good representation of the actual process. (C) 2010 Published by Elsevier Ltd.
Resumo:
Demands for optimal boiler performance and increased concerns in lowering emission have always been the driving force in the reevaluation and evolution of the Kraft boiler: specifically the air distribution strategies that are directly related to achieving increased residence time of flue gas combustion inside the furnace which in turn lowers atmosphere emission levels and enhances boiler operation. This paper presents the results of a study that analyzes the interaction of the different multilevel air injections have on flue gas flow patterns including various quaternary air supply arrangements. Additionally, this study assesses the performance of the CFD (Computational Fluid Dynamics) model against data available in literature. Simulations were performed considering isothermal and incompressible flows, and did not take into account thermal phenomena or chemical reactions. The numerical solutions generated proved to be coherently related to the data available in literature, and provided proof of the efficiency of tertiary level air injection, as well as revealed that quaternary air injection ports arranged in a symmetrical configuration is most suitable for optimal equipment operation. (C) 2010 Elsevier B.V. All rights reserved.