182 resultados para PMMA. Thermal crystallization. Submicron particles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, some research groups have been developing studies aiming to apply spouted beds of inert particles for production of dried herbal extracts. However, mainly due to their complex composition, several problems arise during the spouted bed drying of herbal extracts such as bed instability, product accumulation, particle agglomeration, and bed collapse. The addition of drying carriers, like colloidal silicon dioxide, to the extractive solution can minimize these unwanted effects. The aim of this work was to study the influence of the addition of colloidal silicon dioxide on enhancement of the performance of the drying of hydroalcoholic extract of Bauhinia forficata Link on a spouted bed of inert particles. The physical properties of the herbal extract and of its mixture with colloidal silicon dioxide at several concentrations (20% to 80% related to solids content) were quantified by determination of the surface tension, rheological properties, density, pH, and contact angles with the inert surfaces. Drying performance was evaluated through determination of the elutriation ratio, product recovery ratio, and product accumulation. The product was characterized through determination of the thermal degradation of bioactive compounds and product moisture content. The results indicated that the rheological properties of the extracts and their preparations, the contact angle with inert material, and the work of adhesion play important roles in the spouted bed drying of herbal extracts. Higher concentration of the drying carrier significantly improved the spouted bed drying performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microencapsulation of Lippia sidoides essential oil was carried out by spray drying. Blends of maltodextrin and gum arabic were used as carrier. Spray dried microparticles were characterized using conventional (thermogravimetry, evolved gas analysis) and combined (thermogravimetry-mass spectrometry analysis) thermal analysis techniques in order to evaluate the abilities of carriers with different compositions in retaining and in releasing the core vs. dynamic heating. Thermal analysis was useful to evaluate the physico-chemical interactions between the core and carriers and to determine the protective effect of the carriers on the evaporation of essential oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skin is a large and accessible area of the body, offering the possibility to be used as an alternative route for drug delivery. In the last few years strong progress has been made on the developing of nanoparticulate systems for specific applications. The interaction of such small particles with human skin and their possible penetration attracted some interest from toxicological as well as from drug delivery perspectives. As size is assumed to play a key role, the aim of the present work was to investigate the penetration profile of very small model particles (similar to 4 nm) into excised human skin under conditions chosen to mimic the in vivo situation. Possible application procedures such as massaging the formulation (5 to 10 minutes) were analyzed by non-invasive multiphoton- and confocal laser scanning microscopy (MPM, CLSM). Furthermore, the application on damaged skin was taken into account by deliberately removing parts of the stratum corneum. Although it was clearly observed that the mechanical actions affected the distribution pattern of the QDs on the skin surface, there was no evidence of penetration into the skin in all cases tested. QDs could be found in deeper layers only after massaging of damaged skin for 10 min. Taking these data into account, obtained on the gold standard human skin, the potential applications of nanoparticulate systems to act as carrier delivering drugs into intact skin might be limited and are only of interest for partly damaged skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chicken eggs were inoculated with suspensions of ambient air particles (<= 10 mu m, PM(10)) from Sao Paulo city in 3, 0.3 or 0.03 mu g doses on one of the four early days of embryo development. On the eleventh day of development alterations were observed on embryos inoculated with PM(10) 3 mu g on the third day. Particles analysis showed high content of metals. Hence, embryos were also inoculated with PM(10) (3 mu g) combined with metal chelating EDTA. PM(10) (3 mu g) embryos presented underdevelopment (stage 29.44 +/- 11.4) compared to vehicle and positive controls (stage 36.44 +/- 0.51 Saline and stage 31.20 +/- 9.7 Cyclophosphamide, p <= 0.05); higher (47%) mortality rate (23% Saline and 42% Cyclophosphamide) and low (68%) viability (100% Saline and 70% Cyclophosphamide, p = 0.04). Effects were attenuated when embryos received PM(10) + EDTA (stage 33.63 +/- 0.94, 18.9% mortality rate and 82% viability). PM(10) from Sao Paulo city is embryotoxic and metal may be implicated in the toxic mechanism. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports on the preparation, characterization and in vitro toxicity test of a new nano-drug delivery system (NDDS) based on bovine serum albumin (BSA) nanospheres which incorporates surface-functionalized magnetic nanoparticles (MNP) and/or the silicon(IV) phthalocyanine (NzPc). The new NDDS was engineered for use in photodynamic therapy (PDT) combined with hyperthermia (HPT) to address cancer treatment. The BSA-based nanospheres, hosting NzPc, MNP or both (NzPc and MNP), present spherical shape with hydrodynamic average diameter values ranging from 170 to 450 nm and zeta potential of around -23 mV. No difference on the fluorescence spectrum of the encapsulated NzPc was found regardless of the presence of MNP. Time-dependent fluorescence measurements of the encapsulated NzPc revealed a bi-exponential decay for samples incorporating only NzPc and NzPc plus MNP, in the time window ranging from 1.70 to 5.20 ns. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic NDDS. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polybia scutellaris constructs huge nests characterized by numerous spinal projections on the surface. We investigated the thermal characteristics of P scutellaris nests in order to determine whether their nest temperature is homeothermically maintained and whether the spines play a role in the thermoregulation of the nests. In order to examine these hypotheses, we measured the nest temperature in a active nest and in an abandoned nest. The temperature in the active nest was almost stable at 27 degrees C, whereas that of the abandoned nest varied with changes in the ambient temperature, suggesting that nest temperature was maintained by the thermogenesis of colony individuals. In order to predict the thermal properties of the spines, a numerical simulation was employed. To construct a 3D-model of a P scutellaris nest, the nest architecture was simplified into an outer envelope and the surface spines, for both of which the initial temperature was set at 27 degrees C. The physical properties of the simulated nest were regarded to be those of wood since the nest of this species is constructed from plant materials. When the model was exposed to cool air (12 degrees C), the temperature was lower in the models with more spines. On the other hand, when the nest was heated (42 degrees C), the temperature increase was smaller in models with more spines. It is suggested that the spines act as a heat radiator, not as an insulator, against the changes in ambient temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrocatalytic activity of Pt and RuO(2) mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt(0.6)Ru(0.4)O(y) electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO(2) to the catalytic activity as well as the better performance of the Pt(0.6)Ru(0.4)O(y) electrode composition. Formic acid and CO(2) were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO(2) was favored in the electrolysis performed at 400 mV (RHE) with the Pt(0.6)Ru(0.4)O(y) electrode. The presence of RuO(2) in Pt-Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are practical and academic situations that justify the study of calcium carbonate crystallization and especially of systems that are associated with organic matrices and a confined medium. Despite the fact that many different matrices have been studied, the use of well-behaved, thin organic films may provide new knowledge about this system. In this work, we have studied the growth of calcium carbonate particles on well-defined organic matrices that were formed by layer-by-layer (LbL) polyelectrolyte films deposited on phospholipid Langmuir-Blodgett films (LB). We were able to change the surface electrical charge density of the LB films by changing the proportions of a negatively charged lipid, the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid (DMPA), and a zwitterionic lipid. dimyristoyl-sn-glycero-phosphatidylethanolamine (DMPE). This affects the subsequent polyelectrolyte LbL film deposition, which also changes the the nature of the bonding (electrostatic interaction or hydrogen bonding). This approach allowed for the formation of calcium carbonate particles of different final shapes, roughnesses, and sizes. The masses of deposited lipids, polyelectrolytes, and calcium cabonate were quantified by the quartz crystal microbalance technique. The structures of obtained particles were analyzed by scanning electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surfactant-mediated solution route for the obtainment of nanosized rare-earth orthophosphates of different compositions (LaPO(4):Eu(3+), (Y,Gd)PO(4):Eu(3+),LaPO(4):Tm(3+), YPO(4):Tm(3+), and YbPO(4):Er(3+)) is presented, and the implications of the morphology control on the solids properties are discussed. The solids are prepared in water-in-heptane microemulsions, using cetyltrimethylammonium bromide and 1-butanol as the surfactant and cosurfactant; the alteration of the starting microemulsion composition allows the obtainment of similar to 30 nm thick nanorods with variable length. The morphology and the structure of the solids were evaluated through scanning electron microscopy and through powder X-ray diffractometry; dynamic light scattering and thermal analyses were also performed. The obtained materials were also characterized through vibrational (FTIR) and luminescence spectroscopy (emission/excitation, luminescence lifetimes, chromaticity, and quantum efficiency), where the red, blue, and upconversion emissions of the prepared phosphors were evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescent and morphological studies of Sr(2)CeO(4) blue phosphor prepared from cerium-doped strontium oxalate precursor are reported Powder samples were prepared from 5 and 25 mol% Ce(3+)-doped strontium oxalate as well as from a mechanical mixture of strontium oxalate and cerium oxalate at a 4 1 ratio respectively All the samples were characterized by XRD IR PLS and SEM The luminescent and structural properties of the Sr(2)CeO(4) material are little affected by the SrCO(3) remaining from precursors The Sr(2)CeO(4) material consists in one-dimensional chains of edge-sharing CeO(6) octahedra that are linked together by Sr(2+) ions The carbonate ion might be associated with oxygen ions of the linear chain and also with the oxygen atoms located in the equatorial position which consequently affects the charge transfer bands between O(2-) and Ce(4+). As observed by SEM, the morphological changes are related to each kind of precursor and thermal treatment along with irregular powder particles within the size range 05-2 mu m (c) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Amaranth is a little-known culture in Brazilian agriculture. Amaranthus cruentus BRS Alegria was the first cultivar recommended by Embrapa for the soil of the Brazilian scrubland. In order to evaluate the potential of this species in the production of flour, starch and protein concentrates, the latter products were obtained from A. cruentus BRS Alegria seeds, characterized and compared with the products obtained from the A. caudatus species cultivated in its soil of origin. RESULTS: The seeds of A. cruentus BRS Alegria furnished high-purity starch and flour with significant content of starch, proteins, and lipids. The starch and flour of this species presented higher gelatinization temperatures and formed stronger gels upon cooling compared with those obtained from the A. caudatus species. This is due to their greater amylose content and a difference in the composition of the more important fatty acids, such as stearic, oleic and linoleic acids, which indicates that they have greater heat stability. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and differential scanning calorimetry revealed the presence of albumins, globulins, glutelins and prolamins in the protein concentrate, which was obtained as a byproduct of starch production. CONCLUSION: Amaranthus cruentus BRS Alegria has potential application in the production of flour, starch and protein concentrates, with interesting characteristics for use as food ingredients. (C) 2010 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-interpenetrating networks (Semi-IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly (vinyl alcohol) (PVA) by the sol-gel process in this study. The characterization of the PDMS/PVA semi-IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (-OH) and hydrophobic (Si-(CH(3))(2)) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi-IPNs prepared, which led to a maximum equilibrium water content of similar to 14 wt % without a loss in the ability to swell less polar solvents. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 158-166, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic investigation of spinel ferrite nanoparticles dispersed in biocompatible polymeric microspheres is reported in this study. X-ray diffraction data analysis confirms the presence of nanosized CoFe(2)O(4) particles (mean size of similar to 8 nm). This finding is corroborated by transmission electron microscopy micrographs. Magnetization isotherms suggest a spin disorder likely occurring at the nanoparticle`s surface. The saturation magnetization value is used to estimate particle concentration of 1.6 x 10(18) cm(-3) dispersed in the polymeric template. A T(1/2) dependence of the coercive field is determined in the low-temperature region (T < 30 K). The model of non-interacting mono-domains is used to estimate an effective magnetic anisotropy of K(eff) = 0.6 x 10(5) J/m(3). The K(eff) value we found is lower than the value reported for spherically-shaped CoFe(2)O(4) nanoparticles, though consistent with the low coercive field observed in the investigated sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the synthesis, characterization and applications of the new cerium(III) beta-diketonate Ce(hdacac)(3)(Hhdacac)(3)center dot 2H(2)O (where hdacac and Hhdacac denote, respectively, the hexadecylpentane-2,4-dionate and hexadecylpentane-2,4-dione ligands) as catalyst for the reduction of automotive emissions. Due to its amphiphilic character, this complex can be solubilized in non-polar fuels, thus generating cerium(IV) oxide particles, which efficiently catalyze the oxidation of diesel/biodiesel soot. The synthesized complex was characterized by microanalysis (C, H), thermal analysis, and infrared spectroscopy. Scanning electron microscopy, X-ray diffractometry, and specific surface area measurements attested that the complex can act as a soluble precursor of homogeneous CeO(2) spherical nanoparticles. The efficiency of this compound as catalyst for the reduction of soot emission was evaluated through static studies (comprising carbon black oxidation), which confirmed that increasing concentrations of the complex result in lower carbon black oxidation temperatures and lower activation Gibbs free energies. Dynamic studies, which embraced the combustion of diesel/biodiesel blends containing different amounts of the solubilized complex in a stationary motor, allowed a comparative evaluation of the soot emission through diffuse reflectance spectroscopy. These analyses provided very emphatic evidences of the efficiency of this new cerium complex for the control of soot emission in diesel/biodiesel motors. (c) 2009 Published by Elsevier B.V.