172 resultados para Lang, Francis, 1654-1725
Resumo:
The residence time distribution and mean residence time of a 10% sodium bicarbonate solution that is dried in a conventional spouted bed with inert bodies were measured with the stimulus-response method. Methylene blue was used as a chemical tracer, and the effects of the paste feed mode, size distribution of the inert bodies, and mean particle size on the residence times and dried powder properties were investigated. The results showed that the residence time distributions could be best reproduced with the perfect mixing cell model or N = 1 for the continuous stirred tank reactor in a series model. The mean residence times ranged from 6.04 to 12.90 min and were significantly affected by the factors studied. Analysis of variance on the experimental data showed that mean residence times were affected by the mean diameter of the inert bodies at a significance level of 1% and by the size distribution at a level of 5%. Moreover, altering the paste feed from dripping to pneumatic atomization affected mean residence time at a 5% significance level. The dried powder characteristics proved to be adequate for further industrial manipulation, as demonstrated by the low moisture content, narrow range of particle size, and good flow properties. The results of this research are significant in the study of the drying of heat-sensitive materials because it shows that by simultaneously changing the size distribution and average size of the inert bodies, the mean residence times of a paste can be reduced by half, thus decreasing losses due to degradation.
Resumo:
The influence of concentration and incorporation time of different drying excipients on the processing yields and physical properties of Eugenia dysenterica DC spray-dried extracts were investigated following a factorial design. Under the established conditions, the process yield ranged from 57.55 to 89.14%, and in most experiments, the recovered products presented suitable flowability and compressibility, as demonstrated by the Hausner factor, Carr index, and angle of repose. Additionally, in a general way, the parameters related to the dried products` flowability varied over a range acceptable for pharmaceutical purposes. An analysis of variance (ANOVA) proved that both factors and some of their interactions significantly affected most of the investigated responses at different levels. Mannitol proved to be an interesting alternative as an excipient for the drying of herbal extracts, even at low concentrations such as 12.5%. Furthermore, these results imply that the best condition to obtain dry extracts of E. dysenterica with high performance and adequate pharmacotechnical properties involves the lowest concentration and the highest incorporation time of mannitol.
Resumo:
Emulsions containing vegetable oils and anisotropic phases have especially attractive properties in pharmaceutical technology. They are use as vehicle for different kind of drugs, especially those of topical application. Apart from that, many vegetable oil have pharmacological activity, increasing the necessity for the development of new delivery systems for them. We developed emulsions with vegetable oils at a fixed surfactant ratio and observed the formation of liquid crystalline phases. Nine vegetable oils: Andiroba, Apricot, Avocado, Brazil Nut, Buriti, Cupuassu, Marigold, Passion Fruit and Pequi and mineral oil were tested. Surfactant system was consisted by Steareth-2 and Ceteareth-5. Emulsions were prepared by the emulsion phase inversion (EPI) method, presenting high stability independent on the HLB value. Results indicate that this method could be employed to attain stable emulsions, even if the required HLB value is not known.
Resumo:
Red yeast rice is a pigmented material that is traditionally used in Asia as a food colorant. In addition to food applications, red yeast rice is known in traditional Chinese medicine for its therapeutic actions. The aim of this work was to study the quality interactions during spray drying of extracts from the Monascus ruber van Tiegham fermentation broth. The quality indicators used for the dry powder properties were the levels of monacolin K, ratio of red to yellow pigments, as well as their antioxidant activity. The experiments followed a Box-Behnken design to study the effects of the adjuvant/drug ratio, adjuvant incorporation time, and oulet drying temperature on the pharmacotechnical, chemical, and biological properties of the dry extract. The influences of these factors on the characteristics of the dry powder were evaluated by the bulk density, tapped density, Carr index, Hausner factor, residual moisture content, water activity, antioxidant activity, monacolin K, yellow-to-red pigment ratio, and antioxidant activity. The analysis of variance (ANOVA) on experimental data revealed that an increase in drying temperature significantly increased the dry powder yield and caused an improvement in powder flow properties, which may be related to lower moisture contents. The drying temperature did not affect the monacolin K content in dry powder but showed a complex influence on its antioxidant activity. The increase in drying adjuvant-to-drug ratio affected the yield and also indicated a protective effect on the monacolin K content. The duration of drying adjuvant incorporation had little or negligible effect on powder properties. The dry extracts of red yeast rice showed adequate properties and the process proposed herein can be used to prepare nutraceutical products.
Resumo:
Background: The effectiveness of a water/oil (w/o) microemulsion containing quercetin against ultraviolet B radiation (UVB) induced damage was recently demonstrated by our group. However, during the development of new pharmaceutical products, the evaluation of percutaneous absorption and in vivo effectiveness should be accompanied by evaluation of stability parameters as an integral part of the process. Objective: The aim was to investigate the stability of the final microemulsion formulation considering the temperature ranges of storage and application. Methods: The physical, chemical, and functional stability of this formulation under different conditions of storage during 12 months and the photostability of quercetin incorporated into this system over UVB exposure for 7 days were evaluated. Results: Although the results indicated a notable physical stability of the w/o microemulsions during the experimental period under all employed conditions, in both, the chemical and functional studies, a significant loss of quercetin content and antioxidant activity was found after 6 months of storage at 30 degrees C/70% relative humidity and after 2 months at 40 degrees C/70% relative humidity. The photostability study results demonstrated that the incorporation of quercetin into the w/o microemulsion maintained the previously demonstrated photostability of this flavonoid under forced exposure to UVB irradiation. Conclusion: Thus, this work demonstrates that special storage conditions (at 4 +/- 2 degrees C) are necessary to maintain the functionality of the w/o microemulsion containing quercetin and mainly emphasizes the importance of studying physical, chemical, and functional parameters at the same time during stability evaluation of active principles.
Resumo:
Paracoccidioides brasiliensis infectious process relies on the initial expression of virulence faactors that are assumed to be controlled by molecular mechanisms through which the conidia and/or mycelial fragments convert to yeast cells. In order to analyze the profile of the thermally-induced dimorphic gene expression, 48 h C-L transition cultures which had been incubated at 36 degrees C were studied. By this time approximately 50% of the conidial population had already reverted to yeast form cells. At this transition time, an EST-Orestes library was constructed and characterized. As a result, 79 sequences were obtained, of which 39 (49.4%) had not been described previously in other libraries of this fungus and which could represent novel exclusive C-Y transition genes. Two of these sequences are, among others, cholestanol delta-isomerase, and electron transfer flavoprotein-ubiquinoneoxidoreductase (ETF-QO). The other 40 (50.6%) sequences were shared with Mycelia (M), Yeast (Y) or Mycelia to yest transition (M-Y) libraries. An important component of this group of sequences is a putative response regulator receiver SKN7, a protein of high importance in stress adaptation and a regulator of virulence in some bacteria and fungi. This is the first report identifying genes expressed during the C-Y transition process, the initial step required to understand the natural history of P brasiliensis conidia induced infection.
Resumo:
The (-)-hinokinin display high activity against Trypanosoma cruzi in vitro and in vivo. (-)-Hinokinin-loaded poly(d,l-lactide-co-glycolide) microparticles were prepared and characterized in order to protect (-)-hinokinin of biological interactions and promote its sustained release for treatment of Chagas disease. The microparticles contain (-)-hinokinin were prepared by the classical method of the emulsion/solvent evaporation. The scanning electron microscopy, light-scattering analyzer were used to study the morphology and particle size, respectively. The encapsulation efficiency was determined, drug release studies were kinetically evaluated, and the trypanocidal effect was evaluated in vivo. (-)-Hinokinin-loaded microparticles obtained showed a mean diameter of 0.862 A mu m with smooth surface and spherical shape. The encapsulation efficiency was 72.46 A +/- 2.92% and developed system maintained drug release with Higuchi kinetics. The preparation method showed to be suitable, since the morphological characteristics, encapsulation efficiency, and in vitro release profile were satisfactory. In vivo assays showed significant reduction of mice parasitaemia after administration of (-)-hinokinin-loaded microparticles. Thus, the developed microparticles seem to be a promising system for sustained release of (-)-hinokinin for treatment of Chagas disease.
Resumo:
The application of nanoemulsions is due to have good stability, uniform spreading and enhance active penetration upon skin. Nanometer emulsions can be obtained by low-energy emulsification method. The required hydrophilic and lipophilic balance indicates the better balance of emulsifier for optimum system emulsification. Emulsion stability is evidently controlled for the properties of the adsorbed layer formed in the surface of its globules, know as potential zeta. The aim of this work was to evaluate the oil/water nanoemulsion of formulation obtained after 15 years of preparation. The results suggested that the nanoemulsion have performed stability for many years.
Resumo:
In this study the effects of spray-drying conditions on the retention of enzyme activity of lipase produced by the endophytic fungus Cercospora kikuchii have been investigated. Drying runs were carried out in a bench-top spray dryer with a concurrent flow regime. The influence of the variables inlet temperature of drying gas, Tgi (86.4 to 153.6 degrees C); mass flow rate of the enzymatic extract fed to the dryer, Ws (2.63 to 9.36g/min); and concentration of the drying adjuvant added to the extract, ADJ (1.95 to 12.05%), on the spray-drying performance and on product quality was evaluated through experimental planning and regression analysis. The use of maltodextrin, as a stabilizing agent, slightly improved the retention of enzyme activity compared to -cyclodextrin. Statistical optimization of the experimental results allowed the determination of the processing conditions that maximized the retention of the enzymatic activity (RAE), namely, concentration of drying adjuvants of 12.05%, inlet temperature of the drying gas of 153.6 degrees C, and flow rate of the enzymatic extract fed to the dryer of 9.36g/min for the both drying adjuvants investigated.
Resumo:
The aim of this research was to perform a stability testing of spray- and spouted bed-dried extracts of Passiflora alata Dryander (Passion flower) under stress storage conditions. Spouted bed- and spray-dried extracts were characterized by determination of the average particle diameter (dP), apparent moisture content (XP), total flavonoid content (TF), and vitexin content. Smaller and more irregular particles were generated by the spouted bed system due to a higher attrition rate (surface erosion) inside the dryer. The SB dryer resulted in an end product with higher concentration of flavonoids (approximate to 10%) and lower moisture content (1.6%, dry basis) than the spray dryer, even with both dryers working at similar inlet drying air temperature and ratio between the extract feed flow rate to drying air flow rate (Ws/Wg). Samples of the spouted bed- and spray-dried extracts were stored at two different temperatures (34 and 45 degrees C) and two different relative humidities (52 and 63% RH for 34 degrees C; 52 and 60% RH for 45 degrees C) in order to perform the stability testing. The dried extracts were stored for 28 days and were analyzed every 4 days. The flavonoid vitexin served as the marker compound, which was assayed during the storage period. Results revealed shelf lives ranging from 9 to 184 days, depending on the drying process and storage conditions.
Resumo:
The present study aimed the preparation and characterization of ternary solid dispersions by direct spray drying of a liquid suspension containing curcumin, a solubility enhancer and a drying aid. The experiments followed a Box-Behnken design in order to evaluate the influence of temperature, ratio of curcumin: lipidic carrier, and the collodial silicon dioxide content on the characteristics of the microparticulated solid dispersions. The angle of repose, Hausner factor, Carr index, water activity, and solubility were used to characterize solid dispersions. The results show that water activity, Hausner factor, and Carr index varied in an acceptable range for pharmaceutical purposes. The condition that maximizes solubility was determined using an exploratory design based on a surface response analysis and allowed a 3200-fold increase in curcumin solubility. Ternary solid dispersion showed a 90% curcumin release after 10min during a dissolution test. The results show that the spray drying of a liquid feed is an attractive and promising alternative to obtain enhanced solubility drug ternary solid dispersions.
Resumo:
Baccharis dracunculifolia is the most important vegetal source of propolis in southeast Brazil, and researchers have been investigating its biological properties. Propolis is a complex resinous hive product collected by bees from several plants, showing a very complex chemical composition. It has been employed since ancient times due to its therapeutic properties, such as antimicrobial, anti-inflammatory, antioxidant, immunomodulatory and antitumour activities, among others. The goal of this work was to compare the cytotoxic action of B. dracunculifolia, propolis and two isolated compounds (caffeic and cinnamic acids) on human laryngeal epidermoid carcinoma (HEp-2) cells in vitro. These cells were incubated with different concentrations of each variable, and cell viability was assessed by the crystal violet method. Lower concentrations of B. dracunculifolia (extract and essential oil), propolis, as well as caffeic and cinnamic acids, showed no cytotoxic activity against HEp-2 cells. On the other hand, elevated concentrations (50 and 100 mu g per 100 mu L) exerted a cytotoxic action, and propolis showed a more efficient action than its vegetal source and isolated compounds. Further investigation is still needed in order to explore the potential of these variables as antitumour agents and to understand their mechanisms of action.
Resumo:
Background: It is well known that the Amazon region presents a huge biodiversity; therefore, countless natural resources are being employed in the production of phytocosmetics and phytomedicines. Objective: The purpose of this work was to obtain emulsions produced with Buriti oil and nonionic surfactants. Methods: Two surfactant systems were employed (Steareth-2 associated to Ceteareth-5 and to Ceteareth-20) to produce the emulsions using phase diagram method. Emulsions were obtained by echo-planar imaging method at 75 degrees C. Rheological behavior and zeta potential were evaluated, and accelerated stability tests were performed. Results: All emulsions analyzed presented pseudoplastic behavior. Zeta potential values were obtained between -14.2 and -53.3 mV. The formulations did not show changes in either physical stability, pH, or rheological behavior after accelerated stability tests. Significant differences were observed only after temperature cycling test. Conclusion: Based on these results, the emulsions obtained could be considered as promising delivery systems.
Resumo:
The aims of this study were to evaluate whether air pollution during pre-natal and post-natal phases change habituation and short-term discriminative memories and if oxidants are involved in this process. As secondary objectives, it was to evaluate if the change of filtered to nonfiltered environment could protect the cortex of rats against oxidative stress as well as to modify the behavior of these animals. Wistar, male rats were divided into four groups (n = 12/group): pre and post-natal exposure until adulthood to filtered air (FA); pre-natal period to nonfiltered air (NFA-FA); until (21st post-natal day) and post-natal to filtered air until adulthood (PND21); prenatal to filtered air until PND21 and post-natal to nonfiltered air until adulthood (FA-NFA); pre and post-natal to nonfiltered air (NFA). After 150 days of air pollution exposure, animals were tested in the spontaneous object recognition test to evaluate short-term discriminative and habituation memories. Rats were euthanized; blood was collected for metal determination; cortex dissected for oxidative stress evaluation. There was a significant increase in malondialdehyde (MDA) levels in the NFA group when compared to other groups (FA: 1.730 +/- 0.217; NFA-FA: 1.101 +/- 0.217; FA-NFA: 1.014 +/- 0.300; NFA: 5.978 +/- 1.920 nmol MDA/mg total proteins; p = 0.007). NFA group presented a significant decrease in short-term discriminative (FA: 0.603 +/- 0.106; NFA-FA: 0.669 +/- 0.0666; FA-NFA: 0.374 +/- 0.178; NFA: -0.00631 +/- 0.106 sec; p = 0.006) and an improvement in habituation memories when compared to other groups. Therefore, exposure to air pollution during both those periods impairs short-term discriminative memory and cortical oxidative stress may mediate this process.
Resumo:
The effect of repetitive stress during acute infection with Trypanosoma cruzi (T. cruzi) on the chronic phase of ensuing Chagas` disease was the focus of this investigation. The aim of this study was to evaluate in Wistar rats the influence of repetitive stress during the acute phase of infection (7 days) with the Y strain of T. cruzi on the chronic phase of the infection (at 180 days). Exposure to ether vapor for 1min twice a day was used as a stressor. Repetitive stress enhanced the number of circulating parasites and cardiac tissue disorganization, from a moderate to a severe diffuse mononuclear inflammatory process and the presence of amastigote burden in the cardiac fibers. Immunological parameters revealed that repetitive stress triggered a reduced concanavalin A induced splenocyte proliferation in vitro with major effects on the late chronic phase. Serum interleukin-12 concentration decreased in both stressed and infected rats in the early phase of infection although it was higher on 180 days post-infection. These results suggest that repetitive stress can markedly impair the host`s immune system and enhance the pathological process during the chronic phase of Chagas` disease.