230 resultados para DYNAMIC LIGHT-SCATTERING
Resumo:
Objective: The purpose of this study was to evaluate in vitro the Knoop microhardness (Knoop hardness number [KHN]) and the degree of conversion using FT-Raman spectroscopy of a light-cured microhybrid resin composite (Z350-3M-ESPE) Vita shade A3 photopolymerized with a halogen lamp or an argon ion laser. Background Data: Optimal polymerization of resin-based dental materials is important for longevity of restorations in dentistry. Materials and Methods: Thirty specimens were prepared and inserted into a disc-shaped polytetrafluoroethylene mold that was 2.0 mm thick and 3 mm in diameter. The specimens were divided into three groups (n = 10 each). Group 1 (G1) was light-cured for 20 sec with an Optilux 501 halogen light with an intensity of 1000 mW/cm(2). Group 2 (G2) was photopolymerized with an argon laser with a power of 150 mW for 10 sec, and group 3 (G3) was photopolymerized with an argon laser at 200 mW of power for 10 sec. All specimens were stored in distilled water for 24 h at 37 degrees C and kept in lightproof containers. For the KHN test five indentations were made and a depth of 100 mu m was maintained in each specimen. One hundred and fifty readings were obtained using a 25-g load for 45 sec. The degree of conversion values were measured by Raman spectroscopy. KHN and degree of conversion values were obtained on opposite sides of the irradiated surface. KHN and degree of conversion data were analyzed by one-way ANOVA and Tukey tests with statistical significance set at p < 0.05. Results: The results of KHN testing were G1 = 37.428 +/- 4.765; G2 = 23.588 +/- 6.269; and G3 = 21.652 +/- 4.393. The calculated degrees of conversion (DC%) were G1 = 48.57 +/- 2.11; G2 = 43.71 +/- 3.93; and G3 = 44.19 +/- 2.71. Conclusions: Polymerization with the halogen lamp ( G1) attained higher microhardness values than polymerization with the argon laser at power levels of 150 and 200 mW; there was no difference in hardness between the two argon laser groups. The results showed no statistically significant different degrees of conversion for the polymerization of composite samples with the two light sources tested.
Resumo:
Background: The adaptor protein RACK1 (receptor of activated kinase 1) was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. Results: In this study we performed a biophysical analysis of human RACK1 with the aim of obtaining low resolution structural information. Small angle X-ray scattering (SAXS) experiments demonstrated that human RACK1 is globular and monomeric in solution and its low resolution structure is strikingly similar to that of an homology model previously calculated by us and to the crystallographic structure of RACK1 isoform A from Arabidopsis thaliana. Both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation techniques showed that RACK1 is predominantly a monomer of around 37 kDa in solution, but also presents small amounts of oligomeric species. Moreover, hydrodynamic data suggested that RACK1 has a slightly asymmetric shape. The interaction of RACK1 and Ki1/57 was tested by sedimentation equilibrium. The results suggested that the association between RACK1 and Ki-1/57(122-413) follows a stoichiometry of 1:1. The binding constant (KB) observed for RACK1-Ki-1/57(122-413) interaction was of around (1.5 +/- 0.2) x 10(6) M(-1) and resulted in a dissociation constant (KD) of (0.7 +/- 0.1) x 10(-6) M. Moreover, the fluorescence data also suggests that the interaction may occur in a cooperative fashion. Conclusion: Our SAXS and analytical ultracentrifugation experiments indicated that RACK1 is predominantly a monomer in solution. RACK1 and Ki-1/57(122-413) interact strongly under the tested conditions.
Resumo:
A novel solid phase extraction technique is described where DNA is bound and eluted from magnetic silica beads in a manner where efficiency is dependent on the magnetic manipulation of the beads and not on the flow of solution through a packed bed. The utility of this technique in the isolation of reasonably pure, PCR-amplifiable DNA from complex samples is shown by isolating DNA from whole human blood, and subsequently amplifying a fragment of the beta-globin gene. By effectively controlling the movement of the solid phase in the presence of a static sample, the issues associated with reproducibly packing a solid phase in a microchannel and maintaining consistent flow rates are eliminated. The technique described here is rapid, simple, and efficient, allowing for recovery of more than 60% of DNA from 0.6 mu L of blood at a concentration which is suitable for PCR amplification. In addition, the technique presented here requires inexpensive, common laboratory equipment, making it easily adopted for both clinical point-of-care applications and on-site forensic sample analysis.
Resumo:
The aim of this Study was to compare the learning process of a highly complex ballet skill following demonstrations of point light and video models 16 participants divided into point light and video groups (ns = 8) performed 160 trials of a pirouette equally distributed in blocks of 20 trials alternating periods of demonstration and practice with a retention test a day later Measures of head and trunk oscillation coordination d1 parity from the model and movement time difference showed similarities between video and point light groups ballet experts evaluations indicated superiority of performance in the video over the point light group Results are discussed in terms of the task requirements of dissociation between head and trunk rotations focusing on the hypothesis of sufficiency and higher relevance of information contained in biological motion models applied to learning of complex motor skills
Resumo:
Shoot tips of Ananas comosus `Imperial were rooted in vitro under two environments (artificial and natural light) and after two months the plantlets were transferred to commercial substrate (Plantmax (R)) in a greenhouse. Plant growth and leaf anatomy were evaluated at 0, 7, 15, 30 and 60-days during acclimatization. The in vitro rooting under natural light provides better agronomic and anatomical performances of Ananas comosus plants, with the benefit of saving electric energy for artificial lumination in vegetal tissue culture laboratories.
Resumo:
center dot Dynamic resistance exercise promotes a sizeable increase in blood pressure during its execution in non medicated hypertensives. WHAT THIS STUDY ADDS center dot Atenolol not only decreases blood pressure level but also mitigates the increase of blood pressure during dynamic resistance exercise in hypertensive patients. An increase in blood pressure during resistance exercise might be at least in part attributed to an increase in cardiac output. AIMS This study was conducted to determine whether atenolol was able to decrease BP level and mitigate BP increase during dynamic resistance exercise performed at three different intensities in hypertensives. METHODS Ten essential hypertensives (systolic/diastolic BP between 140/90 and 160/105 mmHg) were blindly studied after 6 weeks of placebo and atenolol. In each phase, volunteers executed, in a random order, three protocols of knee-extension exercises to fatigue: (i) one set at 100% of 1 RM; (ii) three sets at 80% of 1 RM; and (iii) three sets at 40% of 1 RM. Intra-arterial radial blood pressure was measured throughout the protocols. RESULTS Atenolol decreased systolic BP maximum values achieved during the three exercise protocols (100% = 186 +/- 4 vs. 215 +/- 7, 80% = 224 +/- 7 vs. 247 +/- 9 and 40% = 223 +/- 7 vs. 252 +/- 16 mmHg, P < 0.05). Atenolol also mitigated an increase in systolic BP in the first set of exercises (100% = +38 +/- 5 vs. +54 +/- 9; 80% = +68 +/- 11 vs. +84 +/- 13 and 40% = +69 +/- 7 vs. +84 +/- 14, mmHg, P < 0.05). Atenolol decreased diastolic BP values and mitigated its increase during exercise performed at 100% of 1 RM (126 +/- 6 vs. 145 +/- 6 and +41 +/- 6 vs. +52 +/- 6, mmHg, P < 0.05), but not at the other exercise intensities. CONCLUSIONS Atenolol was effective in both reducing systolic BP maximum values and mitigating BP increase during resistance exercise performed at different intensities in hypertensive subjects.
Resumo:
Generally, quadriplegic individuals have difficulties performing object manipulation. Toward satisfactory manipulation, reach and grasp movements must be performed with voluntary control, and for that, grasp force feedback is essential. A hybrid system aiming at partial upper limb sensory-motor restoration for quadriplegics was built. Such device is composed of an elbow dynamic orthosis that provides elbow flexion/extension (range was approximately from 20 degrees to 120 degrees, and average angular speed was approximately 15 degrees/s) with forearm support, a wrist static orthosis and neuromuscular electrical stimulation for grasping generation, and a glove with force sensors that allows grasping force feedback. The glove presents two user interface modes: visual by light emitting diodes or audio emitted by buzzer. Voice control of the entire system (elbow dynamic orthosis and electrical stimulator) is performed by the patient. The movements provided by the hybrid system, combined with the scapular and shoulder movements performed by the patient, can aid quadriplegic individuals in tasks that involve reach and grasp movements.
Resumo:
Conventional threading operations involve two distinct machining processes: drilling and threading. Therefore, it is time consuming for the tools must be changed and the workpiece has to be moved to another machine. This paper presents an analysis of the combined process (drilling followed by threading) using a single tool for both operations: the tap-milling tool. Before presenting the methodology used to evaluate this hybrid tool, the ODS (operating deflection shapes) basics is shortly described. ODS and finite element modeling (FEM) were used during this research to optimize the process aiming to achieve higher stable machining conditions and increasing the tool life. Both methods allowed the determination of the natural frequencies and displacements of the machining center and optimize the workpiece fixture system. The results showed that there is an excellent correlation between the dynamic stability of the machining center-tool holder and the tool life, avoiding a tool premature catastrophic failure. Nevertheless, evidence showed that the tool is very sensitive to work conditions. Undoubtedly, the use of ODS and FEM eliminate empiric decisions concerning the optimization of machining conditions and increase drastically the tool life. After the ODS and FEM studies, it was possible to optimize the process and work material fixture system and machine more than 30,000 threaded holes without reaching the tool life limit and catastrophic fail.
Resumo:
The machining of hardened steels has always been a great challenge in metal cutting, particularly for drilling operations. Generally, drilling is the machining process that is most difficult to cool due to the tool`s geometry. The aim of this work is to determine the heat flux and the coefficient of convection in drilling using the inverse heat conduction method. Temperature was assessed during the drilling of hardened AISI H13 steel using the embedded thermocouple technique. Dry machining and two cooling/lubrication systems were used, and thermocouples were fixed at distances very close to the hole`s wall. Tests were replicated for each condition, and were carried out with new and worn drills. An analytical heat conduction model was used to calculate the temperature at tool-workpiece interface and to define the heat flux and the coefficient of convection. In all tests using new and worn out drills, the lowest temperatures and decrease of heat flux were observed using the flooded system, followed by the MQL, considering the dry condition as reference. The decrease of temperature was directly proportional to the amount of lubricant applied and was significant in the MQL system when compared to dry cutting. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study presents an alternative three-dimensional geometric non-linear frame formulation based on generalized unconstrained vector and positions to solve structures and mechanisms subjected to dynamic loading. The formulation is classified as total Lagrangian with exact kinematics description. The resulting element presents warping and non-constant transverse strain modes, which guarantees locking-free behavior for the adopted three-dimensional constitutive relation, Saint-Venant-Kirchhoff, for instance. The application of generalized vectors is an alternative to the use of finite rotations and rigid triad`s formulae. Spherical and revolute joints are considered and selected dynamic and static examples are presented to demonstrate the accuracy and generality of the proposed technique. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Limited information is available on the interactions between environmental factors and algal growth in tropical and subtropical aquatic systems. We investigated the relationships between algal biomass (measured as chlorophyll, Chl-a) and light, total phosphorus (TP) and total nitrogen (TN) in longitudinal zones of subtropical reservoirs. We studied the seasonal variation of water variables in Itupararanga Reservoir (Brazil) and compared the results with 16 other subtropical lakes and reservoirs. The longitudinal zones in Itupararanga Reservoir were considered statistically different (p 0.05, MANOVA). From the riverine zone to the dam region of the reservoir, Spearman Correlation Test suggested that light limitation and TP limitation tended to decrease and increase, respectively. Although nitrate concentrations were high (400 g/L), the Spearman coefficients between Chl-a and TN and the TN:TP ratios (11:1 TN:TP 35:1) indicated that nitrogen may be co-limiting algal growth in the studied water body. Putting Itupararanga in a regional context allowed assessment of potential influences of land use on trophic state. Within the subtropical dataset, TP explained a greater percentage of variance in Chl-a (R2 = 0.70) than TN (R2 = 0.17). The main land use type within the reservoirs drainage area significantly influenced the concentrations of TP, TN, and Chl-a (p 0.05, MANOVA), with different relationships between nutrients and chlorophyll in forested (R2 = 0.12-0.33), agricultural (R2 = 0.50-0.68) and urban (R2 = 0.09-0.64) watersheds. Comparisons with literature values and those from reservoirs with less altered watersheds indicated that Itupararanga Reservoir is reaching the mesotrophic-eutrophic boundary, and further nutrient enrichment could cause water quality degradation.
Resumo:
Highly ordered A-B-A block copolymer arrangements in the submicrometric scale, resulting from dewetting and solvent evaporation of thin films, have inspired a variety of new applications in the nanometric world. Despite the progress observed in the control of such structures, the intricate scientific phenomena related to regular patterns formation are still not completely elucidated. SEBS is a standard example of a triblock copolymer that forms spontaneously impressive pattern arrangements. From macroscopic thin liquid films of SEBS solution, several physical effects and phenomena act synergistically to achieve well-arranged patterns of stripes and/or droplets. That is, concomitant with dewetting, solvent evaporation, and Marangoni effect, Rayleigh instability and phase separation also play important role in the pattern formation. These two last effects are difficult to be followed experimentally in the nanoscale, which render difficulties to the comprehension of the whole phenomenon. In this paper, we use computational methods for image analysis, which provide quantitative morphometric data of the patterns, specifically comprising stripes fragmentation into droplets. With the help of these computational techniques, we developed an explanation for the final part of the pattern formation, i.e. structural dynamics related to the stripes fragmentation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is to study the wheel/workpiece dynamic interactions in high-speed grinding using vitrified CBN wheel and DTG (difficult to grind) work materials. This problem is typical in the grinding of engine valve heads. The influence of tangential force per abrasive grain was investigated as an important control variable for the determination of G ratio. Experiments were carried out to observe the influence of vibrations in the wheel wear. The measurements of acoustic emission (AE) and vibration signals helped in identifying the correlation between the dynamic interactions (produced by forced random excitation) and the wheel wear. The wheel regenerative chatter phenomenon was observed by using the wheel mapping technique. (c) 2008 CIRP.
Resumo:
The present analysis takes into account the acceleration term in the differential equation of motion to obtain exact dynamic solutions concerning the groundwater flow towards a well in a confined aquifer. The results show that the error contained in the traditional quasi-static solution is very small in typical situations.
Resumo:
Track critical locations with respect to the railway vehicle safety are the passages through the turnouts. The purpose of this investigation is to evaluate the safety of a railway vehicle crossing a turnout. In this study, the topography of a track turnout lay-out has been experimentally measured, and its geometric properties were synthesised. Results show that a constant wavelength vehicle oscillation occurs on the switches in the turnout and that the maximum lateral force at 65 km/h is almost 65% greater than those at low speeds (under 30 km/h).