273 resultados para 240202 Condensed Matter Physics - Structural Properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, nanocomposites of polyaniline (PANI) and layered alpha-Zr(HPO4)(2).H2O (alpha-ZrP) were prepared using two different approaches: (i) the in situ aniline polymerization in the presence of the layered inorganic material and (ii) the layer-by-layer (LBL) assembly using an aqueous solution of the polycation emeraldine salt (ES-PANI) and a dispersion of exfoliated negative slabs of alpha-ZrP. These materials were characterized spectroscopically using mainly resonance Raman scattering at four exciting radiations and electronic absorption in the UV-VIS-NIR region. Structural and textural characterizations were carried out using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The polymer obtained by the in situ aniline polymerization is located primarily in the external surface of the inorganic material although aniline monomers were intercalated between alpha-ZrP interlayer regions before oxidative polymerization. Through resonance Raman spectroscopy, it was observed that the formed polymer has semiquinone units (ES-PANI) and also azo bonds (-N = N-), showing that this method results in a polymer with a different structure from the usual ""head-to-tail"" ES-PANI. The LBL assembly of pre-formed ES-PANI and exfoliated alpha-ZrP particles produces homogeneous films with reproducible deposition from layer to layer, up to 20 bilayers. Resonance Raman (lambda(0) = 632.8 nm) spectrum of PANI/ZrP LBL film shows an enhancement in the intensity of the polaronic band at 1333 cm(-1) (nu C-N center dot+) and the decrease of the band intensity at 1485 cm(-1) compared to bulk ES-PANI. Its UV-VIS-NIR spectrum presents an absorption tail in the NIR region assigned to delocalized free charge carrier. These spectroscopic features are characteristic of highly conductive secondary doped PANI suggesting that polymeric chains in PANI/ZrP LBL film have a more extended conformation than in bulk ES-PANI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel hydroxide can provide an outstanding cathode material in alkaline secondary batteries, however the progressive decrease of the charge capacity as a function of the number of oxidation/reduction cycles is a challenging problem to be solved. New improvements on the electrochemical properties of electrode materials can be achieved by exploiting the much better performance of alpha-nickel hydroxide. Such materials were obtained in a stable form by sol-gel method and characterized by thermogravimetric analyses, UV-Vis spectroscopy, X-ray diffractometry, scanning and transmission electron microscopy, cyclic voltammetry and electrochemical quartz crystal microbalance techniques. The results revealed not only the formation of the alpha-Ni(OH)(2) phase, but also a much better electrochemical reversibility and stability as compared with similar materials obtained by electrochemical precipitation method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behaviour of multi-walled carbon nanotubes was compared with that of glassy carbon, and the differences were investigated by cyclic voltammetry and electrochemical impedance spectroscopy before and after acid pre-treatment. The electrochemical techniques showed that acid functionalisation significantly improves the electrocatalytic properties of carbon nanotubes. These electrocatalytic properties enhance the analytical signal, shift the oxidation peak potential to a less positive value, and the charge-transfers rate increase of both dopamine and K(4)[Fe(CN)(6)]. The functionalisation step and the resulting appearance of edge planes covered with different chemical groups were confirmed by FTIR measurements. Carbon nanotubes after acid pre-treatment are a potentially powerful analytical tool for sensor development. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the preparation and characterization of a solid polymer electrolyte based on amylopectin-rich starch plasticized with glycerol. The samples were characterized through ionic conductivity (sigma) measurements, scanning electron microscopy, thermal analysis, and spectroscopy in the UV-Vis-NIR region. The results showed that the highest sigma (1.1 x 10(-4) Scm(-1) at 30 degrees C) was obtained for the sample with n = [O]/[Li] = 6.5 ratio. In addition, the samples plasticized with 30-35 wt.% of glycerol presented high ionic conductivity, transparency and conduction stability. The ionic conductivity measurements as a function of lithium salt contents showed a maximum for n=6.5. The ionic conductivity as a function of time for amylopectin-rich starch plasticized with 30 wt.% of glycerol and containing [O]/[Li] = 10 showed conduction stability over 6 months (sigma similar to 3.01 x 10(-5) S cm(-1)). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature-dependent electrical resistance in quasi-one-dimensional Li(0.9)Mo(6)O(17) is described by two Luttinger liquid anomalous exponents alpha, each associated with a distinct one dimensional band. The band with alpha < 1 is argued to crossover to a higher dimension below the temperature T(M'), leading to superconductivity. Disorder and magnetic fields are shown to induce the Bose metal behavior in this bulk compound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the scanning tunneling microscopy (STM) signatures for the O/Cu(3)Au(100) surface from the low-coverage (isolated impurity) to high-coverage (oxide) regimes. First-principles calculations show that oxygen signatures switch from dark to bright spots as the oxygen coverage increases. This behavior is nicely traced back to a change in the oxygen orbital character of the Fermi-level electronic states. Our results allow for the chemical identification by STM of oxygen and copper atoms in the fully ordered O/Cu(3)Au(100)-c(2x2) surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The melting temperature and the crystallization temperature of Bi nanoclusters confined in a sodium borate glass were experimentally determined as functions of the cluster radius. The results indicate that, on cooling, liquid Bi nanodroplets exhibit a strong undercooling effect for a wide range of radii. The difference between the melting temperature and the freezing temperature decreases for decreasing radius and vanishes for Bi nanoparticles with a critical radius R = 1.9 nm. The magnitude of the variation in density across the melting and freezing transitions for Bi nanoparticles with R = 2 nm is 40% smaller than for bulk Bi. These experimental results support a basic core-shell model for the structure of Bi nanocrystals consisting of a central crystalline volume surrounded by a structurally disordered shell. The volume fraction of the crystalline core decreases for decreasing nanoparticle radius and vanishes for R = 1.9 nm. Thus, on cooling, the liquid nanodroplets with R < 1.9 nm preserve, across the liquid-to-solid transformation, their homogeneous and disordered structure without crystalline core.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the dynamics of a resistively shunted Josephson junction. We compute the Josephson frequency and the generalized impedances for a variety of the parameters, particularly with relevance to predicting the measurable effects of zero-temperature current noise in the resistor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using ab initio total energy calculations, we show that bilayer systems of ZnO nanoribbons, (ZnO)(2)NR, doped with Co atoms exhibit a piezomagnetic behavior. We find the formation of energetically stable zigzag chains of Co atoms along the edge sites of (ZnO)(2)NR's, Co(Zn(chain))-(ZnO)(2)NR. At the ground state, the antiferromagnetic and the ferromagnetic states are very close in energy, whereas upon longitudinal stretch, parallel to the nanoribbon growth direction, it becomes ferromagnetic. Further electronic structure calculations indicate that not only the magnetic state but also the electronic structure of CoZn(chain)-(ZnO)(2)NR can be tuned by the mechanical stretch. In this case, we find that stretched NR's exhibit dispersive unpaired electronic states within the (ZnO)(2)NR band gap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-organic materials constitute a new field in which to search for ferroelectricity and coupling between electricity and magnetism. We observe a magnetic field-induced change in the electric polarization, Delta P(H), that reaches 50 mu C/m(2) in single crystals of NiCl(2)-4SC(NH(2))(2) (DTN). DTN forms a tetragonal structure that breaks inversion symmetry with the electrically polar thiourea molecules [SC(NH(2))] all tilted in the same direction along the c axis. The field H induces canted antiferromagnetism of the Ni S = 1 spins between 2 and 12 T and our measurements show that the electric polarization increases monotonically in this range, saturating above 12 T. By modeling the microscopic origin of this magnetoelectric effect, we find that the leading contribution to Delta P comes from the change in the crystal electric field, with a smaller contribution from magnetic exchange striction. The finite value of Delta P induced by magnetostriction results from the polar nature of the thiourea molecules bonded to the Ni atoms, and it is amplified by the softness of these organic molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We observe zero-differential resistance states at low temperatures and moderate direct currents in a bilayer electron system formed by a wide quantum well. Several regions of vanishing resistance evolve from the inverted peaks of magneto-intersubband oscillations as the current increases. The experiment, supported by a theoretical analysis, suggests that the origin of this phenomenon is based on instability of homogeneous current flow under conditions of negative differential resistivity, which leads to formation of current domains in our sample, similar to the case of single-layer systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EuTe possesses the centrosymmetric crystal structure m3m of rocksalt type in which the second-harmonic generation is forbidden in electric dipole approximation but the third-harmonic generation (THG) is allowed. We studied the THG spectra of this material and observed several resonances in the vicinity of the band gap at 2.2-2.5 eV and at higher energies up to 4 eV, which are related to four-photon THG processes. The observed resonances are assigned to specific combinations of electronic transitions between the ground 4f(7) state at the top of the valence band and excited 4f(6)5d(1) states of Eu(2+) ions, which form the lowest energy conduction band. Temperature, magnetic field, and rotational anisotropy studies allowed us to distinguish crystallographic and magnetic-field-induced contributions to the THG. A strong modification of THG intensity for the 2.4 eV band and suppression of the THG for the 3.15 eV band was observed in applied magnetic field. Two main features of the THG spectra were assigned to 5d(t(2g)) and 5d(e(g)) subbands at 2.4 eV and 3.15 eV, respectively. A microscopic quantum-mechanical model of the THG response was developed and its conclusions are in qualitative agreement with the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental studies of magnetoresistance in high-mobility wide quantum wells reveal oscillations which appear with an increase in temperature to 10 K and whose period is close to that of Shubnikov-de Haas oscillations. The observed phenomenon is identified as magnetointersubband oscillations caused by the scattering of electrons between two occupied subbands and the third subband which becomes occupied as a result of thermal activation. These small-period oscillations are less sensitive to thermal suppression than the large-period magnetointersubband oscillations caused by the scattering between the first and the second subbands. Theoretical study, based on consideration of electron scattering near the edge of the third subband, gives a reasonable explanation of our experimental findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of one-dimensional carbon chains from graphene nanoribbons is investigated using ab initio molecular dynamics. We show under what conditions it is possible to obtain a linear atomic chain via pulling of the graphene nanoribbons. The presence of dimers composed of two-coordinated carbon atoms at the edge of the ribbons is necessary for the formation of the linear chains, otherwise there is simply the full rupture of the structure. The presence of Stone-Wales defects close to these dimers may lead to the formation of longer chains. The local atomic configuration of the suspended atoms indicates the formation of single and triple bonds, which is a characteristic of polyynes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles calculations it is demonstrated that Co doped graphenelike ZnO sheet presents ferromagnetic coupling. The Co atoms are energetically barrierless absorbed in the Zn sites, suffering a Jahn-Teller distortion. The results reveal that the origin of the ferromagnetic coupling, different from the bulk 3D ZnO stacking, is mainly guided by a direct exchange interaction without any additional defect. This ferromagnetic coupling is due to the system topology, namely, it is a direct consequence of the two-dimensional character of the ZnO monolayer within graphenelike structure. Increasing the number of ZnO layers the ferromagnetic coupling vanishes.