200 resultados para osmotic water permeability
Resumo:
Due to its wide industrial use, chromium (Cr) is considered a serious environmental pollutant of aquatic bodies. in order to investigate the ecophysiological responses of water hyacinth [Eichhornia crassipes (Mart.) Solms] to Cr treatment, plants were exposed to 1 and 10 mM Cr(2)O(3) (Cr(3+)) and K(2)Cr(2)O(7) (Cr(6+)) concentrations for two or 4 days in a hydroponic system. Plants exposed to the higher concentration of Cr(6+) for 4 days did not survive, whereas a 2 days treatment with 1 mM Cr(3+) apparently stimulated growth. Analysis of Cr uptake indicated that most of the Cr accumulated in the roots, but some was also translocated and accumulated in the leaves. However, in plants exposed to Cr(6+) (1 mM), a higher translocation of Cr from roots to shoots was observed. it is possible that the conversion from Cr(6+) to Cr(3+), which immobilizes Cr in roots, was not total due to the presence of Cr(6+), causing deleterious effects on gas exchange, chlorophyll a fluorescence and photosynthetic pigment contents. Chlorophyll a was more sensitive to Cr than chlorophyll b. Cr(3+) was shown to be less toxic than Cr(6+) and, in some cases even increased photosynthesis and chlorophyll content. This result indicated that the F(v)/F(0) ratio was more effective than the F(v)/F(m) ratio in monitoring the development of stress by Cr(6+). There was a linear relationship between qP and F(v)/F(m). No statistical differences were observed in NPQ and chlorophyll a/b ratio, but there was a tendency to decrease these values with Cr exposure. This suggests that there were alterations in thylakoid stacking, which might explain the data obtained for gas exchanges and other chlorophyll a fluorescence parameters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Chlorophyll a fluorescence parameters and transmission electron microscopy (TEM) were used to assess the stress conditions in water hyacinth along the Paraiba do Sul River (PSR), an important River in southeastern Brazil. The data were obtained at the end of the dry season of 2005 and at the end of the wet season of 2006. Changes in F-o and F-m parameters were observed as differentiated responses, depending on the season. Non-photochemical dissipation (qN and NPQ) from plants was greater in the most industrialized region of the PSR in both seasons. However, F-v/F-m for all samples ranged between 0.77 and 0.81, showing that high maximum quantum yield was maintained. Although the F-v/F-m suggests that the plants were exhibiting normal photochemical activities, ultrastructural changes in chloroplasts showed thylakoids disorganization. Plants from the most industrialized region showed non-stacking grana thylakoids disposition. In spite of these alterations, the membrane integrity was maintained, suggesting an adaptation to adjustment to adverse environmental conditions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Experimental results obtained from a greenhouse trial with common bean (Phaseolus vulgaris L) plants performed to test model hypotheses regarding the onset of limiting hydraulic conditions and the shape of the transpiration reduction curve in the falling rate phase are presented. According to these hypotheses based on simulations with an upscaled single-root model, the matric flux potential at the onset of limiting hydraulic conditions is as a function of root length density and potential transpiration rate, while the relative transpiration in the falling rate phase equals the relative matric flux potential. Transpiration of bean plants in water stressed pots with four different soils was determined daily by weighing and compared to values obtained from non-stressed pots. This procedure allowed determining the onset of the falling rate phase and corresponding soil hydraulic conditions. At the onset of the falling rate phase, the value of matric flux potential M(I) showed to differ in order of magnitude from the model predicted value for three out of four soils. This difference between model and experiment can be explained by the heterogeneity of the root distribution which is not considered by the model. An empirical factor to deal with this heterogeneity should be included in the model to improve predictions. Comparing the predictions of relative transpiration in the falling rate phase using a linear shape with water content, pressure head or matric flux potential, the matric flux potential based reduction function, in agreement with the hypothesis, showed the best performance, while the pressure head based equation resulted in the highest deviations between observed and predicted values of relative transpiration rates. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Water use and crop coefficient for hybrid DKB 390. This work aims to characterize the water use of maize hybrid DKB 390 under suitable conditions of irrigation for both sufficient and below-optimal situations of nitrogen supply. Crop coefficient values for different stages are also presented as a result, in order to provide the basis for crop water budget and management throughout the cycle. A field experiment was carried Out during the main season, in which biomass, soil moisture, leaf area, climate data and light transmittance were evaluated. These have allowed deriving water balance, use and efficiency. The mentioned genotype requires around 600 nun for high yield targets, being less efficient when led under below-optimal nitrogen fertilization.
Resumo:
The climatic water balance is one of the most used tools to assess, indirectly the amount of water present in the soil is capable of meeting the water needs of the plant. This study analyzed the climatologic hydric balance, the effective soil water storage and coffee plant transpiration in dry regimen cultivation. Daily climatologic hydric balance was calculated for coffee from January 2003 to May 2006. It was concluded that even in the most rainy months of the year, there is a hydric deficit in coffee plants grown in a dry regimen; effective soil water storage varied greatly through the years evaluated, and September was the most critical month, when this value remained below 30%; relative transpiration can not be taken as the single evaluation method for yield losses of coffee, grown in a dry regimen.
Resumo:
A new laboratory method was proposed to establish an easily performed standard for the determination of mobile soil water close to real conditions during the infiltration and redistribution of water in a soil. It consisted of applying a water volume with a tracer ion on top of an undisturbed ring sample on a pressure plate under a known suction or pressure head. Afterwards, soil water mobility was determined by analyzing the tracer-ion concentration in the soil sample. Soil water mobility showed to be a function of the applied water volume. No relation between soil water mobility and applied pressure head could be established with data from the present experiment. A simple one- or two-parameter equation can be fitted to the experimental data to parameterize soil water mobility as a function of applied solute volume. Sandy soils showed higher mobility than loamy soils at low values of applied solute volumes, and both sandy and loamy soils showed an almost complete mobility at high applied solute volumes.
Resumo:
There is concern that the use of lower quality phosphate rock can result in elevated amounts of Fe-Al-P water-insoluble compounds in fertilizers and, consequently, low agronomic effectiveness. Therefore, studies were conducted to evaluate the effect of some of these compounds on plant growth. Four commercial superphosphates varying in chemical composition (two single and two triple superphosphates) were selected for the study. Fertilizer impurities were collected as water-insoluble residues by washing each P source with deionized water. A modal analysis, based primarily on elemental chemical analysis and x-ray diffractometry, was used to estimate the chemical composition of each P source. Water-soluble monocalcium phosphate (MCP) and the water-leached fertilizer residues were prepared to give a range of fertilizers in terms of water-soluble phosphorus (WSP) (0-100% of the available P as MCP). The water-leached fractions, MCP, and the mixtures of MCP with water-leached fractions were applied to supply 40 mg available P kg(1) to a thermic Rhodic Kanhapludult with pH values of 5.2 +/- 0.05 (unlimed) and 6.4 +/- 0.08 (limed). Wheat (Triticum aestivum L.) grown in a greenhouse for 101 d served as the test crop. The requirement for WSP was source and pH dependent. At a soil pH of 5.2, the fertilizers required 73 to 95% WSP to reach the maximum dry-matter yield, while they required 60 to 86% WSP at pH 6.4. To reach 90% of the maximum yield, all superphosphate fertilizers required <50% WSP. These results show that it is not always necessary to have high water solubility as required by legislation in many countries.
Resumo:
The effects of drying and rewetting (DRW) have been studied extensively in non-saline soils, but little is known about the impact of DRW in saline soils. An incubation experiment was conducted to determine the impact of 1-3 drying and re-wetting events on soil microbial activity and community composition at different levels of electrical conductivity in the saturated soil extract (ECe) (ECe 0.7, 9.3, 17.6 dS m(-1)). A non-saline sandy loam was amended with NaCl to achieve the three EC levels 21 days prior to the first DRW; wheat straw was added 7 days prior to the first DRW. Each DRW event consisted of 1 week drying and 1 week moist (50% of water holding capacity, WHC). After the last DRW, the soils were maintained moist until the end of the incubation period (63 days after addition of the wheat straw). A control was kept moist (50% of WHC) throughout the incubation period. Respiration rates on the day after rewetting were similar after the first and the second DRW, but significantly lower after the third DRW. After the first and second DRW, respiration rates were lower at EC17.6 compared to the lower EC levels, whereas salinity had little effect on respiration rates after the third DRW or at the end of the experiment when respiration rates were low. Compared to the continuously moist treatment, respiration rates were about 50% higher on day 15 (d15) and d29. On d44, respiration rates were about 50% higher at EC9.7 than at the other two EC levels. Cumulative respiration was increased by DRW only in the treatment with one DRW and only at the two lower EC levels. Salinity affected microbial biomass and community composition in the moist soils but not in the DRW treatments. At all EC levels and all sampling dates, the community composition in the continuously moist treatment differed from that in the DRW treatments, but there were no differences among the DRW treatments. Microbes in moderately saline soils may be able to utilise substrates released after multiple DRW events better than microbes in non-saline soil. However, at high EC (EC17.6), the low osmotic potential reduced microbial activity to such an extent that the microbes were not able to utilise substrate released after rewetting of dry soil.
Resumo:
Correct modeling of root water uptake partitioning over depth is an important issue in hydrological and crop growth models. Recently a physically based model to describe root water uptake was developed at single root scale and upscaled to the root system scale considering a homogeneous distribution of roots per soil layer. Root water uptake partitioning is calculated over soil layers or compartments as a function of respective soil hydraulic conditions, specifically the soil matric flux potential, root characteristics and a root system efficiency factor to compensate for within-layer root system heterogeneities. The performance of this model was tested in an experiment performed in two-compartment split-pot lysimeters with sorghum plants. The compartments were submitted to different irrigation cycles resulting in contrasting water contents over time. The root system efficiency factor was determined to be about 0.05. Release of water from roots to soil was predicted and observed on several occasions during the experiment; however, model predictions suggested root water release to occur more often and at a higher rate than observed. This may be due to not considering internal root system resistances, thus overestimating the ease with which roots can act as conductors of water. Excluding these erroneous predictions from the dataset, statistical indices show model performance to be of good quality.
Resumo:
With the aim to study the water efficiency on the muskmelon hydroponics during a long cycle of crop and with different intervals between irrigation was carried out an experiment in two season from October 2003 to January 2004 (season I) and from January to April (season II). The experiment was carried out on the Fitotecnia Department on the Universidade Federal of Santa Maria, Santa Maria, RS. Were determined the water consumptions on the growth of the plants to observe the water efficiency. The water efficiency was a maximum on the blossom phase (4.19g de FS m(-3)) on the season I and on the vegetative phase (8.22g de FS m(-3)) for season II, associated with an elevated growth rate and small water consumptions on these seasons.
Resumo:
The effect of four irrigation levels (50; 75; 100 and 150% of the evaporation in the class A pan) and four levels of N (0,075; 0, 150; 0,225 and 0,300 kg(-1)), were evaluated on productivity and components of production of the watermelon `Charleston Gray`. The experiment was conducted under field conditions, from October/2003 to January/2004, using a randomized split-plot design, with the factor depths in plot and depths of N in split-plot. It was verified that the factors water and nitrogen presented a highly significant effect in the yield of watermelon, while the interaction among the factors was not significant. The maximum productivity of the watermelon (68.59 Mg ha(-1)) was obtained with 421 mm of water and 267 kg ha(-1) of N. The water was more efficiently used with increments in dosage of N, being the maximum value observed of 279.54 kg ha(-1) mm(-1), obtained with a depth of water of 205 mm and a depths of N of 225 kg ha(-1). The maximum efficiency of the use of the water for the nitro en was 221 kg ha(-1) mm(-1), for 249 kg ha(-1) of N. The sugar content of the watermelon, measured in degrees Brix, was affected by the depths of irrigation, depths of N and by its interactions.
Resumo:
Nile tilapia social position (Oreochromis niloticus) can be mediated by multiple channels, including chemical communication. Absence of chemical cues in the environment prevents hierarchical settlement among pairs, and enhances time spent in confrontations. The aim of this study was to test the effect of continuously renewed water flow on the establishment of hierarchical dominance in Nile tilapia juveniles. In this condition, a high frequency of attacks and disruption on hierarchical stability were expected because chemical cues for hierarchy maintenance could be washed out. After 3 days in isolation, the fish were paired by standard size but not by sex, and submitted to two conditions: continuously renewed water flow (RENEWED, n = 7) and non-renewed water flow (NONRENEWED n = 8). The paired fish were placed in an aquarium (40 cm x 30 cm x 40 cm) for 3 h; four 10-min sessions were video-recorded: the first, immediately after the fish were paired and the others 1, 2, and 3 h after pairing. Hierarchy was identified by a dominance index (DI = given attacks/received + given attacks) For each fish. The hierarchical stability was achieved by analyzing the difference between dominant DI and subordinate DI (DI-D). Hierarchy was established in both groups after second session because the DI was significantly higher for one fish of the pair. The frequency of attacks of the dominant fish in RENEWED and NONRENEWED conditions was similar in all observation sessions. The attack frequency by subordinate fish was also similar during the first three sessions (2-h pairing). However, the frequency of attacks by subordinate fish in the RENEWED condition was higher than in the NONRENEWED situation at the fourth observation session (means +/- S.E.: RENEWED = 2.83 +/- 0.94 x 10 min(-1) and NONRENEWED = 0.25 +/- 0.16 x 10 min(-1); Mann-Whitney, p = 0.04). At this point, a significant reduction of the DI-D was observed (means +/- S.E.: RENEWED = 0.70 +/- 0.11 and NONRENEWED = 1,00 +/- 0.002; Mann-Whitney, p = 0.04). The changes in DI-D were related to more frequent attacks by the subordinated fish in renewed water flow. According to our results, the unsteady agonistic interaction under renewed water flow leads to social instability. Thus, continuous water renewing can wash out relevant chemical substances and therefore disturb the dominance recognition by subordinate fish. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Aqueous extract of mate, made from dried leaves of Ilex paraguariensis, St. Hilaire, was shown to be effective during chilled storage for up to 10 days in protecting lipids and vitamin E against oxidation in pre-cooked meat balls made from chicken breast added 0.5% salt and packed in atmospheric air. Extracts made with water, methanol, ethanol or 70% aqueous acetone were evaluated by comparing (1) total phenolic content, (2) radical scavenging capacity, (3) effect on lipid oxidation in a food emulsion model, and in liposomes. Based on the three-step evaluation, aqueous mate extract was preferred for food use. Dried leaves were further compared to dried rosemary leaves in chicken meat balls, and mate (0.05 and 0.10%) found to yield equal or better protection than rosemary at the same concentration against formation of secondary lipid oxidation products.
Resumo:
An experiment was implemented to study fluid flow in a pressure media. This procedure successfully combines nuclear magnetic resonance imaging with a pressure membrane chamber in order to visualize the non-wetting and wetting fluid flows with controlled boundary conditions. A specially designed pressure membrane chamber, made of non-magnetic materials and able to withstand 4 MPa, was designed and built for this purpose. These two techniques were applied to the drainage of Douglas fir sapwood. In the study of the longitudinal flow, narrow drainage fingers are formed in the latewood zones. They follow the longitudinal direction of wood and spread throughout the sample length. These fingers then enlarge in the cross-section plane and coalesce until drainage reaches the whole latewood part. At the end of the experiments, when the drainage of liquid water in latewood is completed, just a few sites of percolation appear in earlywood zones. This difference is a result of the wood anatomical structure, where pits, the apertures that allow the sap to flow between wood cells, are more easily aspirated in earlywood than in latewood. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Microemulsion electrokinetic capillary chromatography has been successfully applied to the separation and determination of water-soluble vitamins (thiamine hydrochloride, riboflavin, niacin, pyridoxine hydrochloride, folic acid, cobalamin, ascorbic acid) and a fat-soluble vitamin (alpha-tocopherol acetate). The optimal microemulsion buffer contained sodium dodecylsulfate (SDS) as surfactant, butan-1-ol as the co-surfactant, ethyl acetate as the oil and pH 9.2 tetraborate buffer, modified with 15% (v/v) 2-propanol. UV detection at 214 nm gave adequate sensitivity without interference from sample excipients. Under the optimized conditions, the vitamins were baseline separated in less than 7 min. Analytical curves of peak area versus concentration presented coefficients of determination (R (2) ) > 0.99, acceptable limits of quantification between 8.40 and 16.23 mu g mL(-1) were obtained. Vitamin levels in liquid formulation were quantified with intra-day precision better than 0.99% RSD for migration time and 1.19% RSD for peak area ratio. Recoveries ranged between 98.7 and 101.7%. The method was considered appropriate for rapid and routine analysis.