170 resultados para bilateral loans


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical stimulation of the lateral nucleus of the habenula (LHb), an area implicated in the regulation of serotonergic activity in raphe nuclei, affects the acquisition of inhibitory avoidance and escape expression of rats submitted to the elevated T-maze test of anxiety. Here, we investigated whether facilitation of 5-HT-mediated neurotransmission in the dorsal periaqueductal gray (dPAG) accounts for the behavioral consequences in the elevated T-maze induced by chemical stimulation of the LHb. The dPAG in the midbrain, which is innervated by 5-HT fibers originating from the dorsal raphe nucleus (DRN), has been consistently implicated in the genesis/regulation of anxiety- and fear-related defensive responses. The results showed that intra-dPAG injection of WAY-100635 or ketanserin, 5-HT(1A) and 5-HT(2A/2C) receptor antagonists, respectively, counteracted the anti-escape effect caused by bilateral intra-LHb injection of kainic acid (60 pmol/0.2 mu l). Ketanserin, but not WAY-100635, blocked kainic acid`s facilitatory effect on inhibitory avoidance acquisition. Overall, the results suggest that the pathway connecting the LHb to the DRN is involved in the control of 5-HT release in the dPAG, and facilitation of 5-HT-mediated neurotransmission in the latter area distinctively impacts upon the expression of anxiety- and fear-related defensive behaviors. While stimulation of 5-HT(1A) receptors selectively affects escape performance, 5-HT(2A/2C) receptors modulate both inhibitory avoidance and escape. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute restraint is an unavoidable stress situation that evokes marked and sustained cardiovascular changes, which are characterized by blood pressure and heart rate increases. In the present study, we tested the hypothesis that insular cortex mediates cardiovascular responses to acute restraint stress in rats. To that purpose, the insular cortex synaptic transmission was inhibited by bilateral microinjection of the nonselective synaptic blocker cobalt chloride (CoCl(2), 1 mM/100 nL). Insular cortex pretreatment with CoCl(2) decreased restraint-evoked pressor and tachycardiac responses, thus indicating an involvement of synapses within the insular cortex on the modulation of cardiovascular responses to restraint stress. The present results indicate that insular cortex synapses exert a facilitatory influence on blood pressure and HR increase evoked by acute restraint stress in rats. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering the evidence that the lateral septal area (LSA) modulates defensive responses, the aim of the present study is to verify if this structure is also involved in contextual fear conditioning responses. Neurotransmission in the LSA was reversibly inhibited by bilateral microinjections of cobalt chloride (CoCl(2), 1 mM) 10 min before or after conditioning or 10 min before re-exposure to the aversively conditioned chamber. Only those animals that received CoCl(2) before re-exposure showed a decrease in both cardiovascular and behavioral conditioned responses. These results suggest that the LSA participates in the expression, but not acquisition or consolidation, of contextual fear conditioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h-1) on a rodent treadmill before and after BST treatment with CoCl(2), a non-selective neurotransmission blocker. Bilateral microinjection of CoCl(2) (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h-1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h-1. The BST treatment with CoCl(2) did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl(2) did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>In the present study, we investigated the effects of inhibition of the lateral hypothalamus (LH) neurotransmission with bilateral microinjection of CoCl(2), a non-selective blocker of neurotransmission, on modulation of cardiac baroreflex responses in conscious rats as well as the involvement of LH glutamatergic neurotransmission in this modulation. Reflex bradycardiac and tachycardiac responses to blood pressure increases (following i.v. infusion of phenylephrine) or decreases (following i.v. infusion of sodium nitroprusside) were investigated in conscious male Wistar rats. Responses were evaluated before and after microinjection of 1 nmol/100 nL CoCl(2), 2 nmol/100 nL 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzoquinoxaline-7-sulphonamide (NBQX; a selective non-N-methyl-d-aspartate (NMDA) glutamate receptor antagonist) or different doses (2, 4 or 8 nmol/100 nL) of the selective NMDA glutamate receptor antagonist LY235959. Microinjection of CoCl(2) into the LH had no effect on the tachycardiac baroreflex response, but did evoke a decrease in the reflex bradycardia caused by increases in blood pressure. Microinjection of NBQX into the LH had a similar effect on reflex bradycardia as CoCl(2), but had no effect on the tachycardiac response. Microinjection of increasing doses of LY235959 into the LH had no effect on the cardiac baroreflex response. In conclusion, the data suggest that the LH has a tonic facilitatory influence on the parasympathetic component of the baroreflex. The results also indicate that this facilitatory influence is mediated by local LH glutamatergic neurotransmission through non-NMDA glutamatergic receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The insular cortex (IC) has been reported to modulate the cardiac parasympathetic activity of the baroreflex in unanesthetized rats. However, which neurotransmitters are involved in this modulation is still unclear. In the present study, we evaluated the possible involvement of local IC-noradrenergic neurotransmission in modulating reflex bradycardiac responses. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL), into the IC of male Wistar rats, increased the gain of reflex bradycardia in response to mean arterial pressure (MAP) increases evoked by intravenous infusion of phenylephrine. However, bilateral microinjection of equimolar doses of either the selective alpha(2)-adrenoceptor antagonist RX821002 or the non-selective beta-adrenoceptor antagonist propranolol into the IC did not affect the baroreflex response. No effects were observed in basal MAP or heart rate values after bilateral microinjection of noradrenergic antagonists into the IC, thus suggesting no tonic influence of IC-noradrenergic neurotransmission on resting cardiovascular parameters. In conclusion, these data provide evidence that local IC-noradrenergic neurotransmission has an inhibitory influence on baroreflex responses to blood pressure increase evoked by phenylephrine infusion through activation of alpha(1)-adrenoceptors. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Costa-Silva JH, Zoccal DB, Machado BH. Glutamatergic antagonism in the NTS decreases post-inspiratory drive and changes phrenic and sympathetic coupling during chemoreflex activation. J Neurophysiol 103: 2095-2106, 2010. First published February 17, 2010; doi: 10.1152/jn.00802.2009. For a better understanding of the processing at the nucleus tractus solitarius (NTS) level of the autonomic and respiratory responses to peripheral chemoreceptor activation, herein we evaluated the role of glutamatergic neurotransmission in the intermediate (iNTS) and caudal NTS (cNTS) on baseline respiratory parameters and on chemoreflex-evoked responses using the in situ working heart-brain stem preparation (WHBP). The activities of phrenic (PND), cervical vagus (cVNA), and thoracic sympathetic (tSNA) nerves were recorded before and after bilateral microinjections of kynurenic acid (Kyn, 5 nmol/20 nl) into iNTS, cNTS, or both simultaneously. In WHBP, baseline sympathetic discharge markedly correlated with phrenic bursts (inspiration). However, most of sympathoexcitation elicited by chemoreflex activation occurred during expiration. Kyn microinjected into iNTS or into cNTS decreased the postinspiratory component of cVNA and increased the duration and frequency of PND. Kyn into iNTS produced no changes in sympathoexcitatory and tachypneic responses to peripheral chemoreflex activation, whereas into cNTS, a reduction of the sympathoexcitation, but not of the tachypnea, was observed. The pattern of phrenic and sympathetic coupling during the chemoreflex activation was an inspiratory-related rather than an expiratory-related sympathoexcitation. Kyn simultaneously into iNTS and cNTS produced a greater decrease in postinspiratory component of cVNA and increase in frequency and duration of PND and abolished the respiratory and autonomic responses to chemoreflex activation. The data show that glutamatergic neurotransmission in the iNTS and cNTS plays a tonic role on the baseline respiratory rhythm, contributes to the postinspiratory activity, and is essential to expiratory-related sympathoexcitation observed during chemoreflex activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ictal behavior coupled with SPECT findings during 28 seizures in patients with temporal lobe epilepsy (TLE) with unilateral hippocampal sclerosis (13 left; 15 right) was displayed as flowcharts from right-sided (RTLE) plus left-sided (LTLE) seizures. Ictal SPECT was classified blind to neuroethology. Behaviors were categorized as ipsilateral to the epileptogenic zone (IL), contralateral to the epileptogenic zone (CL), or bilateral. SPECT intensity and region were categorized as IL or CL to the epileptogenic zone. All patients developed automatisms and had hyperperfusion in their temporal lobes. Patients` verbal responses to questions had statistical interactions in RTLE but not in LTLE sum. Most CL dystonic posturing was correlated to IL basal ganglia hyperperfusion. Basal ganglia activation occurred in seizures without dystonic posturing and CL manual automatisms, and lack of IL dystonic posturing and the presence of CL cerebellar hemispheric hyperperfusion were also observed. Coupling of neuroethology and SPECT findings reliably evaluates ictal behavior and functionality of associated brain areas. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of nitric oxide (NO) in the caudal NTS (cNTS) on baseline cardiovascular and respiratory parameters and on changes in respiratory frequency (fR) and cardiovascular responses to chemoreflex activation was evaluated in awake rats. Bilateral microinjections of L-NAME (200 nmoles/50 nL), a non-selective NO synthase (NOS) inhibitor, into the cNTS increased baseline arterial pressure, while microinjections of NPLA (3 pmoles/50 nL), a selective neuronal NOS (nNOS) inhibitor, did not. L-NAME or N-PLA microinjected into the cNTS reduced the increase in fR in response to chemoreflex activation but not cardiovascular responses. These data show that (a) NO produced by non-nNOS in the cNTS is involved in the baseline autonomic control and (b) NO produced by nNOS in the cNTS is involved in modulation of the increase in fR in response to chemoreflex activation but not in the cardiovascular responses. We conclude that NO produced by the neuronal and endothelial NOS play a different role in the cNTS neurons integral to autonomic and respiratory pathways. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moraes DJA, Bonagamba LGH, Zoccal DB, Machado BH. Modulation of respiratory responses to chemoreflex activation by L-glutamate and ATP in the rostral ventrolateral medulla of awake rats. Am J Physiol Regul Integr Comp Physiol 300: R1476-R1486, 2011. First published March 16, 2011; doi:10.1152/ajpregu.00825.2010.-Presympathetic neurons in the different anteroposterior aspects of rostral ventrolateral medulla (RVLM) are colocalized with expiratory [Botzinger complex (BotC)] and inspiratory [pre-Botzinger complex (pre-BotC)] neurons of ventral respiratory column (VRC), suggesting that this region integrates the cardiovascular and respiratory chemoreflex responses. In the present study, we evaluated in different anteroposterior aspects of RVLM of awake rats the role of ionotropic glutamate and purinergic receptors on cardiorespiratory responses to chemoreflex activation. The bilateral ionotropic glutamate receptors antagonism with kynurenic acid (KYN) (8 nmol/50 nl) in the rostral aspect of RVLM (RVLM/BotC) enhanced the tachypneic (120 +/- 9 vs. 180 +/- 9 cpm; P < 0.01) and attenuated the pressor response (55 +/- 2 vs. 15 +/- 1 mmHg; P < 0.001) to chemoreflex activation (n = 7). On the other hand, bilateral microinjection of KYN into the caudal aspect of RVLM (RVLM/pre-BotC) caused a respiratory arrest in four awake rats used in the present study. Bilateral P2X receptors antagonism with PPADS (0.25 nmol/50 nl) in the RVLM/BotC reduced chemoreflex tachypneic response (127 +/- 6 vs. 70 +/- 5 cpm; P < 0.001; n = 6), but did not change the chemoreflex pressor response. In addition, PPADS into the RVLM/BtC attenuated the enhancement of the tachypneic response to chemoreflex activation elicited by previous microinjections of KYN into the same subregion (188 +/- 2 vs. 157 +/- 3 cpm; P < 0.05; n = 5). Our findings indicate that: 1) L-glutamate, but not ATP, in the RVLM/BtC is required for pressor response to peripheral chemoreflex and 2) both transmitters in the RVLM/BtC are required for the processing of the ventilatory response to peripheral chemoreflex activation in awake rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aimed investigate the age and gender influence on maximal molar bite force and at outlining the criteria for normal masticatory muscle development in a sample of 177 Brazilian Caucasian dentate individuals aged 7-80 years divided into five age groups: I(7-12 years), II (13-20 years), III (21-40 years), IV (41-60 years), and V (61-80 years). Except for Group V, which comprised nine women and eight men, all groups were equally divided in respect to gender (20 M/20 F). Bite force was recorded with a mouth-adapted 1000 N dynamometer and the highest out of three records was regarded as the maximal bite force. The data were submitted to multivariate statistical analysis (SPSS 17.0 p < 0.05). Effects of group and gender were found, but no interactions between them. The ANOVA showed significant differences between groups bilaterally. Bonferroni`s test showed that group I had significantly lower bite force means at both sides as compared to all groups, except group V. No differences were found between the left and right sides. In all the groups, gender was found to be a significant factor associated with maximal bite force. A global comparison including all the subjects and measures showed that the means of men were approximately 30% higher than those of women, within-group comparisons yielded similar results in all groups. Muscle thickness was measured with a SonoSite Titan ultrasound tool using a high-resolution real-time 56 mm/10 MHz linear-array transducer. Three ultrasound images were obtained from the bilateral masseter and temporal muscles at rest and at maximal voluntary contraction. The means of the three measures in each clinical condition were analyzed with multivariate statistical analysis (SPSS 17.0 p < 0.05). A gradual increase in thickness of the masseter and temporal muscles was found both at rest and maximal voluntary contraction for groups I to IV, whereas a decrease in muscle thickness was observed in group V. Multivariate analysis showed that in both conditions there was an effect of group and gender. The study of the development of the stomatognathic system in relation to age and gender can provide useful data for the identification of normal and impaired functioning patterns. The results of this study indicate that age and gender are associated with structural and functional alterations in the muscles of the stomatognathic system. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Additional neurological features have recently been described in seven families transmitting pathogenic mutations in OPA1, the most common cause of autosomal dominant optic atrophy. However, the frequency of these syndromal `dominant optic atrophy plus` variants and the extent of neurological involvement have not been established. In this large multi-centre study of 104 patients from 45 independent families, including 60 new cases, we show that extra-ocular neurological complications are common in OPA1 disease, and affect up to 20% of all mutational carriers. Bilateral sensorineural deafness beginning in late childhood and early adulthood was a prominent manifestation, followed by a combination of ataxia, myopathy, peripheral neuropathy and progressive external ophthalmoplegia from the third decade of life onwards. We also identified novel clinical presentations with spastic paraparesis mimicking hereditary spastic paraplegia, and a multiple sclerosis-like illness. In contrast to initial reports, multi-system neurological disease was associated with all mutational subtypes, although there was an increased risk with missense mutations [odds ratio = 3.06, 95% confidence interval = 1.44-6.49; P = 0.0027], and mutations located within the guanosine triphosphate-ase region (odds ratio = 2.29, 95% confidence interval = 1.08-4.82; P = 0.0271). Histochemical and molecular characterization of skeletal muscle biopsies revealed the presence of cytochrome c oxidase-deficient fibres and multiple mitochondrial DNA deletions in the majority of patients harbouring OPA1 mutations, even in those with isolated optic nerve involvement. However, the cytochrome c oxidase-deficient load was over four times higher in the dominant optic atrophy + group compared to the pure optic neuropathy group, implicating a causal role for these secondary mitochondrial DNA defects in disease pathophysiology. Individuals with dominant optic atrophy plus phenotypes also had significantly worse visual outcomes, and careful surveillance is therefore mandatory to optimize the detection and management of neurological disability in a group of patients who already have significant visual impairment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the long-term clinical outcome of a patient with Leigh-like syndrome presenting as an early onset encephalopathy and peripheral neuropathy caused by the T8993G mutation in the mitochondrial DNA (mtDNA). Clinical follow-up for 20 years revealed a peculiar pattern of slow disease progression, characterized by the addition of new minor deficits, while worsening of previous symptoms was mild. Brain MRI revealed cerebellar atrophy, diffuse demyelination of corona radiata and parietal white matter, and bilateral and symmetrical putaminal lesions. The proportion of mutant mtDNAs in blood was 72% (+/- 0.02%) and in skeletal muscle was 81% (+/- 0.4%). Leigh-like syndrome caused by the T8993G mtDNA mutation is a progressive disease, although not necessarily associated with an aggressive clinical course. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the effects of cannabis on perception are well documented, little is known about their neural basis or how these may contribute to the formation of psychotic symptoms. We used functional magnetic resonance imaging (fMRI) to assess the effects of Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) during visual and auditory processing in healthy volunteers. In total, 14 healthy volunteers were scanned on three occasions. Identical 10mg THC, 600mg CBD, and placebo capsules were allocated in a balanced double-blinded pseudo-randomized crossover design. Plasma levels of each substance, physiological parameters, and measures of psychopathology were taken at baseline and at regular intervals following ingestion of substances. Volunteers listened passively to words read and viewed a radial visual checkerboard in alternating blocks during fMRI scanning. Administration of THC was associated with increases in anxiety, intoxication, and positive psychotic symptoms, whereas CBD had no significant symptomatic effects. THC decreased activation relative to placebo in bilateral temporal cortices during auditory processing, and increased and decreased activation in different visual areas during visual processing. CBD was associated with activation in right temporal cortex during auditory processing, and when contrasted, THC and CBD had opposite effects in the right posterior superior temporal gyrus, the right-sided homolog to Wernicke`s area. Moreover, the attenuation of activation in this area (maximum 61, -15, -2) by THC during auditory processing was correlated with its acute effect on psychotic symptoms. Single doses of THC and CBD differently modulate brain function in areas that process auditory and visual stimuli and relate to induced psychotic symptoms. Neuropsychopharmacology (2011) 36, 1340-1348; doi:10.1038/npp.2011.17; published online 16 March 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To evaluate the advantages and disadvantages of the new low-addition (add) (+3.00 diopter [D]) ReSTOR multifocal IOL compared with the preceding ReSTOR model with +4.00 D add. SETTING: University Eye Hospital, Tuebingen, Germany. DESIGN: Comparative case series. METHODS: Patients with a +3.00 D or +4.00 D add multifocal IOL were examined for uncorrected and distance-corrected visual acuity at distance, intermediate, and near. A defocus profile was assessed, individual reading distance and the distance for lowest intermediate visual acuity were determined. Patient satisfaction was evaluated with a standardized questionnaire. Contrast sensitivity was tested under mesopic and photopic conditions. RESULTS: Uncorrected and distance-corrected intermediate visual acuities were statistically significantly better in the +3.00 D add group (24 eyes) than in the +4.00 D add group (30 eyes); distance and near visual acuities were not different between groups. The defocus profile significantly varied between groups. The +4.00 D add group had a closer reading distance (33.0 cm) than the +3.00 D add group (43.5 cm), a closer point of lowest intermediate visual acuity (65.8 cm versus 86.9 cm) and worse lowest intermediate visual acuity (20/59 +/- 4.5 letters [SD] versus 20/48 +/- 5.5 letters). Thus, patients in the +3.00 D add group reported being more satisfied with intermediate visual acuity. The +3.00 D add group reported more glare but less halos than the +4.00 D add group; contrast sensitivity was not different. CONCLUSION: The lower addition resulted in a narrower defocus profile, a farther reading distance, and better intermediate visual acuity and thus increased patient satisfaction.