357 resultados para Réseau de co-expression
Resumo:
Bulk Zn(1-x)Co(x)O samples were synthesized via standard solid-state reaction route with different Co molar concentrations up to 21%. A detailed microstructural analysis was carried out to investigate alternative sources of ferromagnetism, such as secondary phases and nanocrystals embedded in the bulk material. Conjugating different techniques we confirmed the Zn replacement by Co ions in the wurtzite ZnO structure, which retains, however, a high crystalline quality. No segregated secondary phases neither Co-rich nanocrystals were detected. Superconducting quantum interference device magnetometry demonstrates a paramagnetic Curie-Weiss behavior with antiferromagnetic interactions. We discuss the observed room temperature paramagnetism of our samples considering the current models for the magnetic properties of diluted magnetic semiconductors. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3459885]
Resumo:
Using first-principles calculations it is demonstrated that Co doped graphenelike ZnO sheet presents ferromagnetic coupling. The Co atoms are energetically barrierless absorbed in the Zn sites, suffering a Jahn-Teller distortion. The results reveal that the origin of the ferromagnetic coupling, different from the bulk 3D ZnO stacking, is mainly guided by a direct exchange interaction without any additional defect. This ferromagnetic coupling is due to the system topology, namely, it is a direct consequence of the two-dimensional character of the ZnO monolayer within graphenelike structure. Increasing the number of ZnO layers the ferromagnetic coupling vanishes.
Resumo:
Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.
Resumo:
Positional information in developing embryos is specified by spatial gradients of transcriptional regulators. One of the classic systems for studying this is the activation of the hunchback (hb) gene in early fruit fly (Drosophila) segmentation by the maternally-derived gradient of the Bicoid (Bcd) protein. Gene regulation is subject to intrinsic noise which can produce variable expression. This variability must be constrained in the highly reproducible and coordinated events of development. We identify means by which noise is controlled during gene expression by characterizing the dependence of hb mRNA and protein output noise on hb promoter structure and transcriptional dynamics. We use a stochastic model of the hb promoter in which the number and strength of Bcd and Hb (self-regulatory) binding sites can be varied. Model parameters are fit to data from WT embryos, the self-regulation mutant hb(14F), and lacZ reporter constructs using different portions of the hb promoter. We have corroborated model noise predictions experimentally. The results indicate that WT (self-regulatory) Hb output noise is predominantly dependent on the transcription and translation dynamics of its own expression, rather than on Bcd fluctuations. The constructs and mutant, which lack self-regulation, indicate that the multiple Bcd binding sites in the hb promoter (and their strengths) also play a role in buffering noise. The model is robust to the variation in Bcd binding site number across a number of fly species. This study identifies particular ways in which promoter structure and regulatory dynamics reduce hb output noise. Insofar as many of these are common features of genes (e. g. multiple regulatory sites, cooperativity, self-feedback), the current results contribute to the general understanding of the reproducibility and determinacy of spatial patterning in early development.
Resumo:
Cooperative scattering of light by an extended object such as an atomic ensemble or a dielectric sphere is fundamentally different from scattering from many pointlike scatterers such as single atoms. Homogeneous distributions tend to scatter cooperatively, whereas fluctuations of the density distribution increase the disorder and suppress cooperativity. In an atomic cloud, the amount of disorder can be tuned via the optical thickness, and its role can be studied via the radiation force exerted by the light on the atomic cloud. Monitoring cold (87)Rb atoms released from a magneto-optical trap, we present the first experimental signatures of radiation force reduction due to cooperative scattering. The results are in agreement with an analytical expression interpolating between the disorder and the cooperativity-dominated regimes.
Resumo:
We present an extensive study of the structural, magnetic, and thermodynamic properties of the oxyborate Co(3)O(2)BO(3). This is carried out through x-ray diffraction, static and dynamic magnetic susceptibilities, and specific heat experiments in single crystals in a large temperature range. The structure of Co(3)O(2)BO(3) is composed of subunits in the form of three-leg ladders where Co ions with mixed valency are located. The magnetic properties of this Co ludwigite are determined by a competition between superexchange and double-exchange interactions in the low-dimensional subunits. We discuss the observed physical properties in comparison with the only other known homometallic ludwigite, Fe(3)O(2)BO(3). The latter presents a structural distortion in the ladders and two magnetic transitions. Both features are not found in the present study of the Co ludwigite. The reason for these differences in the structural and magnetic behavior of two apparently similar compounds is discussed.
Resumo:
The present work shows study of the CO(2) capture by amidines DBN and PMDBD using (13)C solid-state NMR and thermal techniques. The solid state (13)C NMR analyses demonstrate the formation of a single PMDBD-CO(2) product which was assigned to stable bicarbonate. In the case of DBN, it is shown that two DBN-CO(2) products are formed, which are suggested to be stable bicarbonate and unstable carbamate. The role of water in the DBN-CO(2) capture as well as the stability of the products to environmental moisture was also investigated. The results suggest that the carbamate formation is favored in dry DBN, but in the presence of water it decompose to form bicarbonate. Thermal analysis shows a good gravimetric CO(2) absorption of DBN. Release of CO(2) was found to be almost quantitative from the PMDBDH(+) bicarbonate about 110 degrees C.
Resumo:
We present an extensive study of the oxyborate material Co(5)Ti(O(2)BO(3))(2) using x-ray, magnetic, and thermodynamic measurements. This material belongs to a family of oxyborates known as ludwigites which presents low-dimensional subunits in the form of three leg ladders in its structure. Differently from previously investigated ludwigites the present material does not show long-range magnetic order although it goes into a spin-glass state at low temperatures. The different techniques employed in this paper allow for a characterization of the structure, the nature of the low-energy excitations and the magnetic anisotropy of this system. Its unique magnetic behavior is discussed and compared with those of other magnetic ludwigites.
Resumo:
Background: Schistosoma mansoni is the major causative agent of schistosomiasis. The parasite takes advantage of host signals to complete its development in the human body. Tumor necrosis factor-alpha (TNF-alpha) is a human cytokine involved in skin inflammatory responses, and although its effect on the adult parasite's metabolism and egg-laying process has been previously described, a comprehensive assessment of the TNF-alpha pathway and its downstream molecular effects is lacking. Methodology/Principal Findings: In the present work we describe a possible TNF-alpha receptor (TNFR) homolog gene in S. mansoni (SmTNFR). SmTNFR encodes a complete receptor sequence composed of 599 amino acids, and contains four cysteine-rich domains as described for TNFR members. Real-time RT-PCR experiments revealed that SmTNFR highest expression level is in cercariae, 3.5 (+/- 0.7) times higher than in adult worms. Downstream members of the known human TNF-alpha pathway were identified by an in silico analysis, revealing a possible TNF-alpha signaling pathway in the parasite. In order to simulate parasite's exposure to human cytokine during penetration of the skin, schistosomula were exposed to human TNF-alpha just 3 h after cercariae-to-schistosomula in vitro transformation, and large-scale gene expression measurements were performed with microarrays. A total of 548 genes with significantly altered expression were detected, when compared to control parasites. In addition, treatment of adult worms with TNF-alpha caused a significantly altered expression of 1857 genes. Interestingly, the set of genes altered in adults is different from that of schistosomula, with 58 genes in common, representing 3% of altered genes in adults and 11% in 3 h-old early schistosomula. Conclusions/Significance: We describe the possible molecular elements and targets involved in human TNF-alpha effect on S. mansoni, highlighting the mechanism by which recently transformed schistosomula may sense and respond to this host mediator at the site of cercarial penetration into the skin.
Resumo:
We present an extensive study of the structural, magnetic, and thermodynamic properties of the two heterometallic oxyborates: Co(2)FeO(2)BO(3) and Ni(2)FeO(2)BO(3). This has been carried out through x-ray diffraction at room temperature (RT) and 150 K, dc and ac magnetic susceptibilities, and specific-heat experiments in single crystals above 2 K. The magnetic properties of these iron ludwigites are discussed in comparison with those of the other two known homometallic ludwigites: Fe(3)O(2)BO(3) and Co(3)O(2)BO(3). In both ludwigites now studied we have found that the magnetic ordering of the Fe(3+) ions occurs at temperatures very near to which they order in Fe(3)O(2)BO(3). A freezing of the divalent ions (Co and Ni) is observed at lower temperatures. Our x-ray diffraction study of both ludwigites at RT and 150 K showed very small ionic disorder in apparent contrast with the freezing of the divalent ion spins. The structural transition that occurs in homometallic Fe(3)O(2)BO(3) has not been found in the present mixed ludwigites in the temperature range investigated.
Resumo:
The crystalline structure of transition-metals (TM) has been widely known for several decades, however, our knowledge on the atomic structure of TM clusters is still far from satisfactory, which compromises an atomistic understanding of the reactivity of TM clusters. For example, almost all density functional theory (DFT) calculations for TM clusters have been based on local (local density approximation-LDA) and semilocal (generalized gradient approximation-GGA) exchange-correlation functionals, however, it is well known that plain DFT fails to correct the self-interaction error, which affects the properties of several systems. To improve our basic understanding of the atomic and electronic properties of TM clusters, we report a DFT study within two nonlocal functionals, namely, the hybrid HSE (Heyd, Scuseria, and Ernzerhof) and GGA + U functionals, of the structural and electronic properties of the Co(13), Rh(13), and Hf(13) clusters. For Co(13) and Rh(13), we found that improved exchange-correlation functionals decrease the stability of open structures such as the hexagonal bilayer (HBL) and double simple-cubic (DSC) compared with the compact icosahedron (ICO) structure, however, DFT-GGA, DFT-GGA + U, and DFT-HSE yield very similar results for Hf(13). Thus, our results suggest that the DSC structure obtained by several plain DFT calculations for Rh(13) can be improved by the use of improved functionals. Using the sd hybridization analysis, we found that a strong hybridization favors compact structures, and hence, a correct description of the sd hybridization is crucial for the relative energy stability. For example, the sd hybridization decreases for HBL and DSC and increases for ICO in the case of Co(13) and Rh(13), while for Hf(13), the sd hybridization decreases for all configurations, and hence, it does not affect the relative stability among open and compact configurations.
Resumo:
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.
Resumo:
Background: Myelodysplastic syndromes (MDS) are a group of clonal hematological disorders characterized by ineffective hematopoiesis with morphological evidence of marrow cell dysplasia resulting in peripheral blood cytopenia. Microarray technology has permitted a refined high-throughput mapping of the transcriptional activity in the human genome. Non-coding RNAs (ncRNAs) transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression, and in the regulation of exon-skipping and intron retention. Characterization of ncRNAs in progenitor cells and stromal cells of MDS patients could be strategic for understanding gene expression regulation in this disease. Methods: In this study, gene expression profiles of CD34(+) cells of 4 patients with MDS of refractory anemia with ringed sideroblasts (RARS) subgroup and stromal cells of 3 patients with MDS-RARS were compared with healthy individuals using 44 k combined intron-exon oligoarrays, which included probes for exons of protein-coding genes, and for non-coding RNAs transcribed from intronic regions in either the sense or antisense strands. Real-time RT-PCR was performed to confirm the expression levels of selected transcripts. Results: In CD34(+) cells of MDS-RARS patients, 216 genes were significantly differentially expressed (q-value <= 0.01) in comparison to healthy individuals, of which 65 (30%) were non-coding transcripts. In stromal cells of MDS-RARS, 12 genes were significantly differentially expressed (q-value <= 0.05) in comparison to healthy individuals, of which 3 (25%) were non-coding transcripts. Conclusions: These results demonstrated, for the first time, the differential ncRNA expression profile between MDS-RARS and healthy individuals, in CD34(+) cells and stromal cells, suggesting that ncRNAs may play an important role during the development of myelodysplastic syndromes.
Resumo:
Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII. Antioxid Redox Signal 11, 1265-1278.
Resumo:
In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO(x)/Hexa NT's) doped with Co(2)+ and Ni(2+) ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co(2+), S = 3/2 and Ni(2+), S = 1) decreases notably the amount of V(4+) ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V(4+) in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3580252]