161 resultados para Perturbação de Stress Pós-Traumático - Post-Traumatic Stress Disorder


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives: The aim of this prospective study was to compare the efficacy of intermittent antegrade blood cardioplegia with or without n-acetylcysteine (NAC) in reducing myocardial oxidative stress and coronary endothelial activation. Methods: Twenty patients undergoing elective isolated coronary artery bypass graft surgery were randomly assigned to receive intermittent antegrade blood cardioplegia (32 degrees C-34 degrees C) with (NAC group) or without (control group) 300 mg of NAC. For these 2 groups we compared clinical outcome, hemodynamic evolution, systemic plasmatic levels of troponin I, and plasma concentrations of malondialdehyde (MDA) and soluble vascular adhesion molecule 1 (sVCAM-1) from coronary sinus blood samples. Results: Patient demographic characteristics and operative and postoperative data findings in both groups were similar. There was no hospital mortality. Comparing the plasma levels of MDA 10 min after the aortic cross-clamping and of sVCAM-1 30 min after the aortic cross-clamping period with the levels obtained before the aortic clamping period, we observed increases of both markers, but the increase was significant only in the control group (P=.039 and P=.064 for MDA; P=.004 and P=.064 for sVCAM- 1). In both groups there was a significant increase of the systemic serum levels of troponin I compared with the levels observed before cardiopulmonary bypass (P<.001), but the differences between the groups were not significant (P=.570). Conclusions: Our investigation showed that NAC as an additive to blood cardioplegia in patients undergoing on-pump coronary artery bypass graft surgery may reduce oxidative stress and the resultant coronary endothelial activation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study investigated the potential use of topical formulations containing marigold extract (ME) (Calendula officinalis extract) against ultraviolet (UV) B irradiation-induced skin damage. The physical and functional stabilities, as well as the skin penetration capacity, of the different topical formulations developed were evaluated. In addition, the in vivo capacity to prevent/treat the UVB irradiation-induced skin damage, in hairless mice, of the formulation with better skin penetration capacity was investigated. All of the formulations were physically and functionally stable. The gel formulation [Formulation 3 (F3)] was the most effective for the topical delivery of ME, which was detected as 0.21 mu g/cm(2) of narcissin and as 0.07 mu g/cm(2) of the rutin in the viable epidermis. This formulation was able to maintain glutathione reduced levels close to those of nonirradiated animals, but did not affect the gelatinase-9 and myeloperoxidase activities increased by exposure to UVB irradiation. In addition, F3 reduced the histological skin changes induced by UVB irradiation that appear as modifications of collagen fibrils. Therefore, the photoprotective effect in hairless mice achieved with the topical application of ME in gel formulation is most likely associated with a possible improvement in the collagen synthesis in the subepidermal connective tissue. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:2182-2193, 2011

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vascular manifestations associated with diabetes mellitus (DM) result from the dysfunction of several vascular physiology components mainly involving the endothelium, vascular smooth muscle and platelets. It is also known that hyperglycemia-induced oxidative stress plays a role in the development of this dysfunction. This review considers the basic physiology of the endothelium, especially related to the synthesis and function of nitric oxide. We also discuss the pathophysiology of vascular disease associated with DM. This includes the role of hyperglycemia in the induction of oxidative stress and the role of advanced glycation end-products. We also consider therapeutic strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bovine leukemia virus (BLV) is among the most widespread livestock pathogens in many countries. Despite advances in understanding the pathogenesis of this disease, little is known about the involvement of oxidative stress. Therefore, this study examined the antioxidant status and the markers of oxidative stress in BLV-infected dairy cows. BLV infection was associated with an increase in triacylglycerol levels, a decrease in glutathione peroxidase (GSH-Px) activity and a tendency toward lower superoxide dismutase activity in the infected animals. No significant difference was observed in other markers of oxidative stress (i.e., conjugated dienes, hydroperoxides and malondialdehyde) in the infected animals compared to controls. A novel method for the analysis of oxidative stress, Z-scan based on the measurement of the mean-value of 9 in low density lipoprotein indicated that the infected animals had low-density lipoprotein particles that were slightly less modified than those from the healthy group. Thus, we conclude that BLV infection is associated with a selective decrease in GSH-Px activity without any alteration in the common plasma markers of oxidative stress. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It was hypothesized the lower fertility of repeat-breeder (RB) Holstein cows is associated with oocyte quality and this negative effect is enhanced during summer heat stress (HS). During the summer and the winter, heifers (H; n = 36 and 34, respectively), peak-lactation (PL; n = 37 and 32, respectively), and RB (n = 36 and 31, respectively) Holstein cows were subjected to ovum retrieval to assess oocyte recovery, in vitro embryonic developmental rates, and blastocyst quality [terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and total cell number]. The environmental temperature and humidity, respiration rate, and cutaneous and rectal temperatures were recorded in both seasons. The summer HS increased the respiration rate and the rectal temperature of PL and RB cows, and increased the cutaneous temperature and lowered the in vitro embryo production of Holstein cows and heifers. Although cleavage rate was similar among groups [H = 51.7% +/- 4.5 (n = 375), PL = 37.9% +/- 5.1 (n = 390), RB = 41.9% +/- 4.5 (n = 666)], blastocyst rate was compromised by HS, especially in RB cows [H = 30.3% +/- 4.8 (n = 244) vs. 23.3% +/- 6.4 (n = 150), PL = 22.0% +/- 4.7 (n = 191) vs. 14.6% +/- 7.6 (n = 103), RB = 22.5% +/- 5.4 (n = 413) vs. 7.9% +/- 4.3 (n = 177)]. Moreover, the fragmentation rate of RB blastocysts was enhanced during the summer, compared with winter [4.9% +/- 0.7 (n = 14) vs. 2.2% +/- 0.2 (n = 78)] and other groups [H = 2.5% +/- 0.7 (n = 13), and PL = 2.7% +/- 0.6 (n = 14)] suggesting that the association of RB fertility problems and summer HS may potentially impair oocyte quality. Our findings provide evidence of a greater sensitivity of RB oocytes to summer HS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Animals inheriting the slick hair gene have a short, sleek, and sometimes glossy coat. The objective of the present study was to determine whether slick-haired Holstein cows regulate body temperature more effectively than wild-type Holstein cows when exposed to an acute increase in heat stress. Lactating slick cows (n = 10) and wild-type cows (n = 10) were placed for 10 h in an indoor environment with a solid roof, fans, and evaporative cooling or in an outdoor environment with shade cloth and no fans or evaporative cooling. Cows were exposed to both environments in a single reversal design. Vaginal temperature, respiration rate, surface temperature, and sweating rate were measured at 1200, 1500, 1800, and 2100 h (replicate 1) or 1200 and 1500 h (replicate 2), and blood samples were collected for plasma cortisol concentration. Cows in the outdoor environment had higher vaginal and surface temperatures, respiration rates, and sweating rates than cows in the indoor environment. In both environments, slick-haired cows had lower vaginal temperatures (indoor: 39.0 vs. 39.4 degrees C; outdoor 39.6 vs. 40.2 degrees C; SEM = 0.07) and respiration rate (indoor: 67 vs. 79 breaths/min; outdoor 97 vs. 107 breaths/min; SEM = 5.5) than wild-type cows and greater sweating rates in unclipped areas of skin (indoor: 57 vs. 43 g.h(-1)/m(2); outdoor 82 vs. 61 g.h(-1)/m(2); SEM = 8). Clipping the hair at the site of sweating measurement eliminated the difference between slick-haired and wild-type cows. Results indicate that slick-haired Holstein cows can regulate body temperature more effectively than wild-type cows during heat stress. One reason slick-haired animals are better able to regulate body temperature is increased sweating rate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The literature shows contradictory results regarding the role of composite shrinkage and elastic modulus as determinants of polymerization stress. The present study aimed at a better understanding of the test mechanics that could explain such divergences among studies. The hypothesis was that the effects of composite shrinkage and elastic modulus on stress depend upon the compliance of the testing system. A commonly used test apparatus was simulated by finite element analysis, with different compliance levels defined by the bonding substrate (steel, glass, composite, or acrylic). Composites with moduli between 1 and 12 GPa and shrinkage values between 0.5% and 6% were modeled. Shrinkage was simulated by thermal analogy. The hypothesis was confirmed. When shrinkage and modulus increased simultaneously, stress increased regardless of the substrate. However, if shrinkage and modulus were inversely related, their magnitudes and interaction with rod material determined the stress response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives. The role of inorganic content on physical properties of resin composites is well known. However, its influence on polymerization stress development has not been established. The aim of this investigation was to evaluate the influence of inorganic fraction on polymerization stress and its determinants, namely, volumetric shrinkage, elastic modulus and degree of conversion. Methods. Eight experimental composites containing 1:1 BisGMA (bisphenylglycidyl dimethacrylate): TEGDMA (triethylene glycol dimethacrylate) (in mol) and barium glass at increasing concentrations from 25 to 60 vol.% (5% increments) were tested. Stress was determined in a universal test machine using acrylic as bonding substrate. Nominal polymerization stress was obtained diving the maximum load by the cross-surface area. Shrinkage was measured using a water picnometer. Elastic modulus was obtained by three-point flexural test. Degree of conversion was determined by FT-Raman spectroscopy. Results. Polymerization stress and shrinkage showed inverse relationships with filler content (R(2) = 0.965 and R(2) = 0.966, respectively). Elastic modulus presented a direct correlation with inorganic content (R(2) = 0.984). Degree of conversion did not vary significantly. Polymerization stress showed a strong direct correlation with shrinkage (R(2) = 0.982) and inverse with elastic modulus (R(2) = 0.966). Significance. High inorganic contents were associated with low polymerization stress values, which can be explained by the reduced volumetric shrinkage presented by heavily filled composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our objective was to compare the polymerization stress (sigma(pol)) of a series of composites obtained using poly(methyl methacrylate) (PMMA) or glass as bonding substrates, and to compare the results with those from in vitro microleakage of composite restorations. The tested hypothesis was that stress values obtained in a less rigid testing system (i.e. using PMMA) would show a better relationship with microleakage data. Five dental composites were tested: Filtek Z250 (FZ), Z100 (Z1), Concept (CO), Durafill (DU) and Heliomolar (HM). sigma(pol) was determined in 1 mm high specimens inserted between two rods (empty set = 5 mm) of either PMMA or glass. The composite elastic modulus (E) was obtained by three-point bending. sigma(pol) and E data were submitted to a one-way analysis of variance/Tukey test (alpha = 0.05). For the microleakage test (MI), bovine incisors received cylindrical cavities (empty set = 5 mm, h = 2 mm), which were restored in bulk. After storage for 24 h in water, specimens were subjected to dye penetration using AgNO(3) as tracer. Specimens were sectioned twice, perpendicularly, and microleakage was measured (in millimeters) under 20x magnification. Data from MI were submitted to the Kruskal-Wallis test. Means (SD) of sigma(pol) (MPa) using glass/PMMA were FZ: 7.5(1.8)(A)/2.5(0.2)(bc); Z1: 7.3(0.5)(A)/2.8(0.3)(ab); CO: 6.8(1.1)(A)/3.2(0.5)(a); DU: 4.5(0.7)(B)/2.0(0.2)(bc); HM: 3.5(0.2)(B)/2.3(0.3)(c). sigma(pol) obtained using PMMA rods were 34-67% lower than with glass. Means (SD) for tooth average/tooth maximum microleakage were FZ: 0.92(0.19)(B)/1.53(0.30)(a); Z1: 1.19(0.21)(A)/1.75(0.20)(a); CO: 1.26(0.25)(A)/1.78(0.24)(a); DU: 0.83(0.30)(B)/1.68(0.46)(a): HM: 0.81(0.27)(B)/1.64(0.54)(a). The tested hypothesis was confirmed, as the composites showed the same ordering both in the polymerization stress test using PMMA rods and in the microleakage test. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To determine the influence of rate of polymerization, degree of conversion and volumetric shrinkage on stress development by varying the amount of photoinitiators in a model composite. Methods: Volumetric shrinkage (with a mercury dilatometer), degree of conversion, maximum rate of reaction (RP(max)) (with differential scanning calorimetry) and polymerization stress (with a controlled compliance device) were evaluated. Bis-GMA/TEGDMA (equal mass ratios) were mixed with a tertiary amine (EDMAB) and camphorqpinone, respectively, in three concentrations (wt%): high= 0.8/1.6; intermediate= 0.4/0.8 and low= 0.2/0.4. 80 wt% filler was added. Composites were photoactivated (400 mW/cm(2) x 40 seconds; radiant exposure=16J/cm(2)). A fourth experimental group was included in which the low concentration formulation was exposed for 80 seconds (32 J/cm(2)). Results: For the same radiant exposure, conversion, RP(max) and stress increased with photoinitiator concentration (P< 0.001). When the low concentration group exposed to 32 J/cm(2) was compared with the high and intermediate groups (exposed to 16 J/cm(2)), RPmax Still increased with the photoinitiator concentration between all levels (P< 0.001) but conversion and stress did not vary (P> 0.05). Shrinkage did not vary regardless of the photoinitiator concentration or radiant exposure. For the photoinitiator concentrations used in this study. Polymerization stress was influenced by conversion but not by rate of reaction. (Am J Dent 2009;22:206-210).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to verify the influence of photoactivation with the argon ion laser on shrinkage stress (SS), followed by evaluation of Vickers microhardness (VM), percentage of maximum hardness (PMH), flexural strength (FS), and flexural modulus (FM) of a composite resin. The study groups were: L1-laser at 200 mW for 10 seconds; L2-laser at 200 mW for 20 seconds; L3-laser at 250 mW for 10 seconds; L4-laser at 250 mW for 20 seconds; H-halogen light at 275 mW for 20 seconds. Data were analyzed by ANOVA/Tukey`s test (alpha=5%). The values of SS (MPa) were statistically lower for the group L3 (1.3)c, followed by groups L1 (2.7)b, L4 (3.4)a, b, L2 (3.7)a, and H (4.5)a. There was no difference in the values of VM when the same time of photoactivation was used, with respective values being L1=70.1a, L2=78.1b, L3=69.9a, L4=78.1b and H=79.9b. All groups showed a PMH of at least 80%. Only the group L1 showed differences in FS (MPa) and FM (GPa), the respective values of 86.2 and 5.4 being lower. Therefore, the use of argon ion laser had influenced the composite resin polymerization. The L3 group presented adequate mechanical properties and minimum SS, reducing the clinical working time for photoactivation of restorations with the tested resin by 50%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymerization stress development results from the complex interplay of volumetric shrinkage, reaction kinetics, and viscoelastic properties. The objective of this study was to examine the relationships among volumetric shrinkage, degree of conversion, rate of polymerization (RPmax), and stress development for 2 model bis-GMA-based composites. Three irradiances were used 220, 400, or 600 mW/cm(2) - with exposure times adjusted to deliver the same radiant energy. Volumetric shrinkage was determined with a mercury dilatometer, degree of conversion and RPmax by differential scanning calorimetry (DSC), and polymerization stress with a low-compliance device (Sakaguchi et al., 2004b). Results indicated that polymerization reaction rate and shrinkage were not correlated. Irradiance was directly related to polymerization reaction rate and to stress development. The group with the highest stress/degree of conversion exhibited the lowest RPmax, so it can be assumed, within the limitations of this study, that the conversion was most closely related to stress development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives. Evaluate the effect of testing system compliance on polymerization stress and stress distribution of composites. Methods. Composites tested were Filtek Z250 (FZ), Herculite (HL), Tetric Ceram (TC), Helio Fill-AP (HF) and Heliomolar (HM). Stress was determined in 1-mm thick specimens, inserted between two rods of either poly(methyl methacrylate), PMMA, or glass. Experimental nominal stress (sigma(exp)) was calculated by dividing the maximum force recorded 5 min after photoactivation by the cross-sectional area of the rod. Composites` elastic modulus (E) was obtained by three-point bending. Data were submitted to one-way ANOVA/Tukey`s test (alpha = 0.05). Stress distribution on longitudinal (sigma(y)) and transverse (sigma(x)) axes of models representing the composites with the highest and lowest E (FZ and HM, respectively) were evaluated by finite element analysis (FEA). Results. sigma(exp) ranged from 5.5 to 8.8 MPa in glass and from 2.6 to 3.4 MPa in PMMA. Composite ranking was not identical in both substrates, since FZ showed or sigma(exp) statistically higher than HM in glass, while in PMMA FZ showed values similar to the other composites. A strong correlation was found between stress reduction (%) from glass to PMMA and composite`s E (r(2) = 0.946). FEA revealed that system compliance was influenced by the composite (FZ led to higher compliance than HM). sigma(x) distribution was similar in both substrates, while cry distribution showed larger areas of compressive stresses in specimens built on PMMA. Significance. sigma(exp) determined in PMMA was 53-68% lower than in glass. Composite ranking varied slightly due to differences in substrates` longitudinal and transverse deformation. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The stress intensity factor threshold (K(IO)) is related to the stress level at which cracks start to grow stably, causing the weakening of porcelain prostheses during their use. The values of K(IO) of seven dental porcelains (with and without reinforcing leucite crystal, KAlSi(2)O(6)) stored in air (22 degrees C, 60% relative humidity) and artificial saliva (37 degrees C) were determined by measuring the crack growth velocity of radial cracks generated at the corner of Vickers indentations. The results of K(IO) were correlated with the leucite content, fracture toughness (K(Ic)), and chemical composition of the porcelains. It was observed that K(IO) increased with the increase of leucite content (only for the leucite-based porcelains) and with the increase of K(Ic). The increase in Al(2)O(3) content or the decrease in the alkali oxide (K(2)O and Na(2)O) content of the material`s glassy matrix tended to increase the K(IO) values. Storage media (air and saliva) did not significantly affect the K(IO) of porcelains tested, indicating that the control parameter of K(IO) value was not the water content of the storage media.