178 resultados para Molecular biology|Cellular biology|Biomedical engineering
Resumo:
Cytoskeleton controls the stability of transcripts, by mechanisms that involve mRNAs and eEF1A attachment to it. Besides, it plays a key role in protein synthesis and secretion, which seems to be impaired in somatotrophs of hypothyroid rats, whose cytoskeleton is disarranged. This study investigated the: eEF1A and GH mRNA binding to cytoskeleton plus GH mRNA translation rate and GH secretion, in sham-operated and thyroidectomized rats treated with T3 or saline, and killed 30 min thereafter. Thyroidectomy reduced: (a) pituitary F-actin content, and eEF1A plus GH mRNA binding to it; (b) GH mRNA recruitment to polysome; and (c) liver IGF-1 mRNA expression, indicating that GH mRNA stability and translation rate, as well as GH secretion were impaired. T3 acutely reversed all these changes, which points toward a nongenomic action of T3 on cytoskeleton rearrangement, which might contribute to the increase on GH mRNA translation rate and GH secretion. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.-Berezniuk, I., Sironi, J., Callaway, M. B., Castro, L. M., Hirata, I. Y., Ferro, E. S., Fricker, L. D. CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in Purkinje cell degeneration mice. FASEB J. 24, 1813-1823 (2010). www.fasebj.org
Resumo:
Ribosomal RNA genes are encoded by large units clustered (18S, 5S, and 28S) in the nucleolar organizer region in several organisms. Sometimes additional insertions are present in the coding region for the 28S rDNA. These insertions are specific non-long terminal repeat retrotransposons that have very restricted integration targets within the genome. The retrotransposon present in the genome of Rhynchosciara americana, RaR2, was isolated by the screening of a genomic library. Sequence analysis showed the presence of conserved regions, such as a reverse transcriptase domain and a zinc finger motif in the amino terminal region. The insertion site was highly conserved in R. americana and a phylogenetic analysis showed that this element belongs to the R2 clade. The chromosomal localization confirmed that the RaR2 mobile element was inserted into a specific site in the rDNA gene. The expression level of RaR2 in salivary glands during larval development was determined by quantitative RT-PCR, and the increase of relative expression in the 3P of the fourth instar larval could be related to intense gene activity characteristic of this stage. 5`-Truncated elements were identified in different DNA samples. Additionally, in three other Rhynchosciara species, the R2 element was present as a full-length element.
Resumo:
Non-LTR retrotransposons, also known as long interspersed nuclear elements (LINEs), are transposable elements that encode a reverse transcriptase and insert into genomic locations via RNA intermediates. The sequence analysis of a cDNA library constructed from mRNA of the salivary glands of R. americana showed the presence of putative class I elements. The cDNA clone with homology to a reverse transcriptase was the starting point for the present study. Genomic phage was isolated and sequenced and the molecular structure of the element was characterized as being a non-LTR retrotransposable element. Southern blot analysis indicated that this transposable element is represented by repeat sequences in the genome of R. americana. Chromosome tips were consistently positive when this element was used as probe in in-situ hybridization. Real-time RT-PCR showed that this retrotransposon is transcribed at different periods of larval development. Most interesting, the silencing of this retrotransposon in R. americana by RNA interference resulted in reduced transcript levels and in accelerated larval development.
Resumo:
A rapid, sensitive and specific LC-MS/MS method was developed and validated for quantifying chlordesmethyldiazepam (CDDZ or delorazepam), the active metabolite of cloxazolam, in human plasma. In the analytical assay, bromazepam (internal standard) and CDDZ were extracted using a liquid-liquid extraction (diethyl-ether/hexane, 80/20, v/v) procedure. The LC-MS/MS method on a RP-C18 column had an overall run time of 5.0 min and was linear (1/x weighted) over the range 0.5-50 ng/mL (R > 0.999). The between-run precision was 8.0% (1.5 ng/mL), 7.6% (9 ng/mL), 7.4% (40 ng/mL), and 10.9% at the low limit of quantification-LLOQ (0.500 ng/mL). The between-run accuracies were 0.1, -1.5, -2.7 and 8.7% for the above mentioned concentrations, respectively. All current bioanalytical method validation requirements (FDA and ANVISA) were achieved and it was applied to the bioequivalence study (Cloxazolam-test, Eurofarma Lab. Ltda and Olcadil (R)-reference, Novartis Biociencias S/A). The relative bioavailability between both formulations was assessed by calculating individual test/reference ratios for Cmax, AUClast and AUCO-inf. The pharmacokinetic profiles indicated bioequivalence since all ratios were as proposed by FDA and ANVISA. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Caspases are central players in proteolytic pathways that regulate cellular processes Such as apoptosis and differentiation. To accelerate the discovery of novel caspase substrates we developed a method combining in silico screening and in vitro validation. With this approach, we identified TAH15 as a novel caspase Substrate in a trial Study. We find that TAF15 was specifically cleaved by caspases-3 and -7. Site-directed mutagenesis revealed the consensus sequence (106)DQPD/Y(110) as the only site recognized by these caspases. Surprisingly, TAF15 was cleaved at more than one site in staurosporine-treated Jurkat cells. In addition, we generated two oncogenic TAF15-CIZ/NMP4-fused proteins which have been found in acute myeloid leukemia and demonstrate that caspases-3 and -7 cleave the fusion proteins at one single site. Broad application of this combination approach should expedite identification of novel caspase-interacting proteins and provide new insights into the regulation of caspase pathways leading to cell death in normal and cancer cells. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-delta (PKC delta) and PI3K but not PKC alpha and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.
Resumo:
Helminths and their products have a profound immunomodulatory effect upon the inductive and effector phases of inflammatory responses, including allergy. We have demonstrated that PAS-1, a protein isolated from Ascaris strum worms, has an inhibitory effect on lung allergic inflammation due to its ability to down-regulate eosinophilic inflammation, Th2 cytokine release and IgE antibody production. Here, we investigated the role of IL-12, IFN-gamma and IL-10 in the PAS-1-induced inhibitory mechanism using a murine model of asthma. Wild type C57BL/6, IL-12(-/-), IFN-gamma(-/-) and IL-10(-/-) mice were immunized with PAS-1 and/or OVA and challenged with the same antigens intranasally. The suppressive effect of PAS-I was demonstrated on the cellular influx into airways, with reduction of eosinophil number and eosinophil peroxidase activity in OVA + PAS-1-immunized wild type mice. This effect well correlated with a significant reduction in the levels of IL-4, IL-5, IL-13 and eotaxin in BAL fluid. Levels of IgE and IgG1 antibodies were also impaired in serum from these mice. The inhibitory activity of PAS-I was also observed in IL-12(-/-) mice, but not in IFN-gamma(-/-) and IL-10(-/-) animals. These data show that IFN-gamma and IL-10, but not IL-12, play an important role in the PAS-1 modulatory effect. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
GB virus C/hepatitis G (GBV-C) is an RNA virus of the family Flaviviridae. Despite replicating with an RNA-dependent RNA polymerase, some previous estimates of rates of evolutionary change in GBV-C suggest that it fixes mutations at the anomalously low rate of similar to 100(-7) nucleotide substitution per site, per year. However, these estimates were largely based on the assumption that GBV-C and its close relative GBV-A (New World monkey GB viruses) codiverged with their primate hosts over millions of years. Herein, we estimated the substitution rate of GBV-C using the largest set of dated GBV-C isolates compiled to date and a Bayesian coalescent approach that utilizes the year of sampling and so is independent of the assumption of codivergence. This revealed a rate of evolutionary change approximately four orders of magnitude higher than that estimated previously, in the range of 10(-2) to 10(-3) sub/site/year, and hence in line with those previously determined for RNA viruses in general and the Flaviviridae in particular. In addition, we tested the assumption of host-virus codivergence in GBV-A by performing a reconciliation analysis of host and virus phylogenies. Strikingly, we found no statistical evidence for host-virus codivergence in GBV-A, indicating that substitution rates in the GB viruses should not be estimated from host divergence times.
Resumo:
A new piggyBac-related transposable element (TE) was found in the genome of a mutant Anticarsia gemmatalis multiple nucleopolyhedrovirus interrupting an inhibitor of apoptosis gene. This mutant virus induces apoptosis upon infection of an Anticarsia gemmatalis cell line, but not in a Trichoplusia ni cell line. The sequence of the new TE (which was named IDT for iap disruptor transposon) has 2531 bp with two DNA sequences flanking a putative Transposase (Tpase) ORF of 1719 bp coding for a protein with 572 amino acids. These structural features are similar to the piggyBac TE, also reported for the first time in the genome of a baculovirus. We have also isolated variants of this new TE from different lepidopteran insect cells and compared their Tpase sequences.
Resumo:
We characterized sequences from genes encoding cathepsin L-like (CatL-like) cysteine proteases from African and South American isolates of Trypanosoma vivax and T. vivax-like organisms, and evaluated their suitability as genetic markers for population structure analysis and diagnosis. Phylogenetic analysis of sequences corresponding to CatL-like catalytic domains revealed substantial polymorphism, and clades of sequences (TviCatL1-9) were separated by large genetic distances. TviCatL1-4 sequences were from cattle isolates from West Africa (Nigeria and Burkina Faso) and South America (Brazil and Venezuela), which belonged to the same T. vivax genotype. T. vivax-like genotypes from East Africa showed divergent sequences, including TviCatL5-7 for isolates from Mozambique and TviCatL8-9 for an isolate from Kenya. Phylogenetic analysis of CatL-like gene data supported the relationships among trypanosome species reflected in the phylogenies based on the analysis of small subunit (SSU) of ribosomal RNA gene sequence data. The discovery of different CatL-like sequences for each genotype, defined previously by ribosomal DNA data, indicate that these sequences provide useful targets for epidemiological and population genetic studies. Regions in CatL-like sequences shared by all T. vivax genotypes but not by other trypanosomes allowed the establishment of a specific and sensitive diagnostic PCR for epidemiological studies in South America and Africa. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Protein degradation by the ubiquitin proteasome system releases large amounts of oligopeptides within cells. To investigate possible functions for these intracellularly generated oligopeptides, we fused them to a cationic transactivator peptide sequence using reversible disulfide bonds, introduced them into cells, and analyzed their effect on G protein-coupled receptor (GPCR) signal transduction. A mixture containing four of these peptides (20-80 mu M) significantly inhibited the increase in the extracellular acidification response triggered by angiotensin II (ang II) in CHO-S cells transfected with the ang II type 1 receptor (AT1R-CHO-S). Subsequently, either alone or in a mixture, these peptides increased luciferase gene transcription in AT1R-CHO-S cells stimulated with ang II and in HEK293 cells treated with isoproterenol. These peptides without transactivator failed to affect GPCR cellular responses. All four functional peptides were shown in vitro to competitively inhibit the degradation of a synthetic substrate by thimet oligopeptidase. Overexpression of thimet oligopeptidase in both CHO-S and HEK293 cells was sufficient to reduce luciferase activation triggered by a specific GPCR agonist. Moreover, using individual peptides as baits in affinity columns, several proteins involved in GPCR signaling were identified, including alpha-adaptin A and dynamin 1. These results suggest that before their complete degradation, intracellular peptides similar to those generated by proteasomes can actively affect cell signaling, probably representing additional bioactive molecules within cells.
Resumo:
Whereas it is well known that T3 inhibits TSH beta gene transcription, its effects on TSH beta mRNA stability and translation have been poorly investigated. This study examined these possibilities, by evaluating the TSH beta transcripts poly(A) tail length, translational rate and binding to cytoskeleton, in pituitaries of thyroidectomized and sham-operated rats treated with T3 or saline, and killed 30 min thereafter. The hypothyroidism induced an increase of TSH beta transcript poly(A) tail, as well as of its content in ribosomes and attachment to cytoskeleton. The hypothyroid rats acutely treated with T3 exhibited a reduction of TSH beta mRNA poly(A) tail length and recruitment to ribosomes, indicating that this treatment decreased the stability and translation rate of TSH beta mRNA. Nevertheless, acute T3 administration to sham-operated rats provoked an increase of TSH beta transcripts binding to ribosomes. These data add new insight to an important role of T3 in rapidly regulating TSH gene expression at posttranscriptional level. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In most bacteria, the ferric uptake regulator (Fur) is a global regulator that controls iron homeostasis and other cellular processes, such as oxidative stress defense. In this work, we apply a combination of bioinformatics, in vitro and in vivo assays to identify the Caulobacter crescentus Fur regulon. A C. crescentus fur deletion mutant showed a slow growth phenotype, and was hypersensitive to H(2)O(2) and organic peroxide. Using a position weight matrix approach, several predicted Fur-binding sites were detected in the genome of C. crescentus, located in regulatory regions of genes not only involved in iron uptake and usage but also in other functions. Selected Fur-binding sites were validated using electrophoretic mobility shift assay and DNAse I footprinting analysis. Gene expression assays revealed that genes involved in iron uptake were repressed by iron-Fur and induced under conditions of iron limitation, whereas genes encoding iron-using proteins were activated by Fur under conditions of iron sufficiency. Furthermore, several genes that are regulated via small RNAs in other bacteria were found to be directly regulated by Fur in C. crescentus. In conclusion, Fur functions as an activator and as a repressor, integrating iron metabolism and oxidative stress response in C. crescentus.
Resumo:
We hypothesize that, in kidney of diabetic rats, hepatocyte nuclear factors (HNF-1 alpha. and HNF-3 beta) play a critical role in the overexpression of solute carrier 2A2 (SLC2A2) gene. Diabetic rats submitted or not to rapid (up to 12 h) and short-term (1, 4 and 6 days) insulin treatment were investigated. Twofold increase in GLUT2 mRNA was observed in diabetic, accompanied by significant increases in HNF-1 alpha and HNF-3 beta expression and binding activity. Additional 2-fold increase in GLUT2 mRNA and HNF-3 beta expression/activity was observed in 12-h insulin-treated rats. Six-day insulin treatment decreased GLUT2 mRNA and HNF-1 alpha expression and activity to levels of non-diabetic rats, whereas HNF-3 beta decreased to levels of non-insulin-treated diabetic rats. Our results provide evidence for a link between the overexpression of SLC2A2 gene and the transcriptional activity of HNF-1 alpha and HNF-3 beta in kidney of diabetic rats. Furthermore, recovery of SLC2A2 gene after 6-day insulin treatment also involves HNF-1 alpha and HNF-3 beta activity. (C) 2009 Elsevier Ireland Ltd. All rights reserved.