173 resultados para Genomic Rearrangement
Resumo:
Purpose: Prostate cancer is the most common tumor in males in Brazil. Single nucleotide polymorphisms have been demonstrated to exist in the promoter regions of matrix metalloproteinase genes and they are associated with the development and progression of some cancers. We investigated the correlation between MMP1, 2, 7 and 9 polymorphisms with susceptibility to prostate cancer, and classic prognostic parameters of prostate cancer. Materials and Methods: Genomic DNA was extracted using conventional protocols. The DNA sequence containing the polymorphic site was amplified by realtime polymerase chain reaction using TaqMan (R) fluorescent probes. Results: For the MMP1 gene the polymorphic allele was more common in the control group than in the prostate cancer group (p <0.001). For the MMP9 gene the incidence of the polymorphic homozygote genotype was higher in the prostate cancer group (p <0.001). For higher stage tumors (pT3) a polymorphic allele in the MMP2 gene was more common (p = 0.026). When considering Gleason score, the polymorphic homozygote genotype of MMP9 was more common in Gleason 6 or less tumors (p = 0.003), while a polymorphic allele in the MMP2 gene was more common in Gleason 7 or greater tumors (p = 0.042). Conclusions: MMP1 and MMP2 may protect against prostate cancer development and MMP9 may be related to higher risk. In contrast, MMP9 polymorphism was associated with a lower Gleason score and MMP2 polymorphism was associated with nonorgan confined disease.
Resumo:
We present the first comprehensive study, to our knowledge, on genomic chromosomal analysis in syndromic craniosynostosis. In total, 45 patients with craniosynostotic disorders were screened with a variety of methods including conventional karyotype, microsatellite segregation analysis, subtelomeric multiplex ligation-dependent probe amplification) and whole-genome array-based comparative genome hybridisation. Causative abnormalities were present in 42.2% (19/45) of the samples, and 27.8% (10/36) of the patients with normal conventional karyotype carried submicroscopic imbalances. Our results include a wide variety of imbalances and point to novel chromosomal regions associated with craniosynostosis. The high incidence of pure duplications or trisomies suggests that these are important mechanisms in craniosynostosis, particularly in cases involving the metopic suture.
Resumo:
Adipose tissue tumors of the retroperitoneum showing no identifiable cytologic atypia are usually classified as lipoma-like well-differentiated liposarcoma. Whether a subset of these tumors represents true examples of retroperitoneal lipoma remains a controversial subject, because the diagnostic liposarcoma cells may be of difficult identification, even after extensive sampling. Herein, we describe a large retroperitoneal lipoma with classic histopathologic, cytogenetic, molecular cytogenetic, and molecular genetic features. Extensive morphologic inspection showed no evidence of cytologic atypia. Cytogenetic analysis performed on fresh tissue material revealed the classic lipoma chromosome t(3;12)(q27;q14-15). Fluorescence in situ hybridization on multiple sections excluded the presence of MDM2 and CDK4 amplification, but showed HMGA2 balanced rearrangement in most cells. Reverse-transcriptase polymerase chain reaction followed by sequencing analysis confirmed the presence of the HMGA2-LPP fusion gene, a characteristic and the most common fusion product found in lipoma. The patient has been followed for 2.5 years without evidence of recurrence or metastasis. These results indicate that retroperitoneal lipomata do exist, but their diagnosis must rely on stringent histologic, cytogenetic, and molecular genetic analysis.
Resumo:
Banana has been currently indicated as a good source of fructooligosaccharides (FOS), which are considered to be functional components of foods. However, significant differences in their amounts in bananas have been observed in the literature. This work aims to identify and quantify FOS during ripening in different banana cultivars belonging to the most common genomic groups cultivated in Brazil. Considering that these differences can be due to cultivar, stage of ripening, and the methodologies used for FOS analyses, sugar contents were analyzed by high performance anion exchange chromatography-pulsed amperometric detection (HPAEC-PAD) and gas chromatography-mass spectrometry (GC-MS). An initial screening of eight cultivars (Ouro, Nanicao, Prata, Maca, Mysore, Pacovan, Terra, and Figo) in a full-ripe stage showed that 1-kestose, the first member of the FOS series (amounts between 297 and 1600 mu g/g of DM), was accumulated in all of them. Nystose, the second member, was detected only in Prata cultivar. Five of the cultivars were analyzed during ripening, and a strong correlation could be established with a specific sucrose level (similar to 200 mg/g of DM), which seems to trigger the synthesis of 1-kestose (the low amounts of FOS, below the functional recommended dose, indicates that banana cannot be considered a good source of FOS).
Resumo:
Posttraumatic stress disorder (PTSD) is a prevalent, disabling anxiety disorder marked by behavioral and physiologic alterations which commonly follows a chronic course. Exposure to a traumatic event constitutes a necessary, but not sufficient, factor. There is evidence from twin studies supporting a significant genetic predisposition to PTSD. However, the precise genetic loci still remain unclear. The objective of the present study was to identify, in a case-control study, whether the brain-derived neurotrophic factor (BDNF) val66met polymorphism (rs6265), the dopamine transporter (DAT1) three prime untranslated region (3`UTR) variable number of tandem repeats (VNTR), and the serotonin transporter (5-HTTPRL) short/long variants are associated with the development of PTSD in a group of victims of urban violence. All polymorphisms were genotyped in 65 PTSD patients as well as in 34 victims of violence without PTSD and in a community control group (n = 335). We did not find a statistical significant difference between the BDNF val66met and 5-HTTPRL polymorphism and the traumatic phenotype. However, a statistical association was found between DAT1 3`UTR VNTR nine repeats and PTSD (OR = 1.82; 95% CI, 1.20-2.76). This preliminary result confirms previous reports supporting a susceptibility role for allele 9 and PTSD.
Resumo:
The sumoylation pathway is a post-translational modification of nuclear proteins widespread among several organisms. SMT3C is the main protein involved in this process and it is covalently conjugated to a diverse assortment of nuclear protein targets. To date, 3 SUMO paralogues (SMT3C, A/B) have been characterized in mammals and plants. In this work we characterized two SUMO related genes, named SMT3B and SMT3C throughout Schistosoma mansoni life cycle. The SmSMTB/C encodes for proteins sharing significant amino acid homology with SMT3. Phylogenetical analyses revealed that both SmSMT3B/C are distinct proteins. Additionally, SmSMT3B and C are expressed in cercariae, adult worms, eggs and schistosomula however SinSMT3C gene showed an expression level 7 to 9 fold higher than SmSMT3B in eggs, schistosomula and adult worms. The comparison between the SmSMT3C genomic and cDNA sequences established that the encoding sequence is interrupted by 3 introns of 70, 37 and 36 bp. Western Blot has shown SMT3 conjugates are present in nuclear and total protein fractions of adults and cercariae. Therefore our results suggest a functional sumoylation pathway, and the presence of two paralogues also suggests the specificity of substrates for SMT3 in S. mansoni. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Cytogenetic studies of choroid plexus tumors, particularly for atypical choroid plexus papillomas, have been rarely described. In the present report, the cytogenetic investigation of an atypical choroid plexus papilloma occurring at the posterior fossa of a 16-year-old male is described. Comparative genome hybridization analysis demonstrated gains of genetic material from almost all chromosomes. Chromosome losses involved 19p, regional losses at chromosome X and loss of chromosome Y. The presence of polyploid cells was confirmed by fluorescence in situ hybridization analysis with probes directed to centromeric regions. Furthermore, the microscopic analysis of cultures showed nuclear buds, nucleoplasmic bridges, and micronuclei in 23% of tumor cells suggesting the presence of complex chromosomal abnormalities. Previous cytogenetic studies on choroid plexus papillomas showed either normal, hypodiploid or hyperdiploid karyotypes. To the best of our knowledge, this is the first report of polyploidy in choroid plexus papilloma of intermediate malignancy grade. Although the mechanisms beneath such genome duplication remain to be elucidated, the observed abnormal nuclear shapes indicate constant restructuring of the tumor`s genome and deserves further investigation.
Resumo:
We used high-resolution SNP genotyping to identify regions of genomic gain and loss in the genomes of 212 medulloblastomas, malignant pediatric brain tumors. We found focal amplifications of 15 known oncogenes and focal deletions of 20 known tumor suppressor genes (TSG), most not previously implicated in medulloblastoma. Notably, we identified previously unknown amplifications and homozygous deletions, including recurrent, mutually exclusive, highly focal genetic events in genes targeting histone lysine methylation, particularly that of histone 3, lysine 9 (H3K9). Post-translational modification of histone proteins is critical for regulation of gene expression, can participate in determination of stem cell fates and has been implicated in carcinogenesis. Consistent with our genetic data, restoration of expression of genes controlling H3K9 methylation greatly diminishes proliferation of medulloblastoma in vitro. Copy number aberrations of genes with critical roles in writing, reading, removing and blocking the state of histone lysine methylation, particularly at H3K9, suggest that defective control of the histone code contributes to the pathogenesis of medulloblastoma.
Resumo:
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system that causes neurological disorders in young adults. Previous studies in various populations highlighted an association between the HLA-DRB1*1.5 allele and MS. This study investigated the association between HLA-DRB1*15 and other HLA-DRB1 alleles and MS in a Brazilian Caucasian population sample from Londrina, Southern Brazil. HLA-DRB1 alleles were analyzed by polymerase chain reaction with specific sequence oligonucleotide primers in 119 MS patients and in 305 healthy blood donors as a control. Among the MS patients, 89 (75.0%) presented with relapsing remitting MS, 24 (20.0%) with secondary progressive MS and 6 (5.0%) with primary progressive MS. The frequency of the HLA-DRB1*15 allele observed in the MS Brazilian patients was similar to findings reported in previous studies carried out in populations worldwide. However, the results showed a higher frequency of the HLA-DRB1*15 allele in the MS patients compared to the controls, with a relative frequency of 0.1050 (10.50%) and 0.0443 (4.4%), respectively (OR=2.53; 95% CI 1.43-4.46; p=0.0009). A protector allele was also detected. The frequency of the HLA-DRB1*11 allele was reduced in the MS patients compared to the controls, with a relative frequency of 0.1345 (13.4%) and 0.1869 (18.7%), respectively (OR=0.67; 95% CI 0.44-1.03; p=0.0692). The results demonstrated that the HLA-DRB1*15 allele in heterozygosity is positively associated with MS (p=0.0079), and may be considered a genetic marker of susceptibility to the disease. A negative association between the HLA-DRB1*11 allele in homozygosity and MS was also verified (p=0.0418); this allele may be considered a genetic marker of resistance to MS in the Brazilian population.
Resumo:
Context: MicroRNAs (miRNAs) are small noncoding RNAs, functioning as antisense regulators of gene expression by targeting mRNA and contributing to cancer development and progression. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites of the genome. Objective: The aim of the study was to analyze the differential expression of let-7a, miR-15a, miR-16, miR-21, miR-141, miR-143, miR-145, and miR-150 in corticotropinomas and normal pituitary tissue and verify whether their profile of expression correlates with tumor size or remission after treatment. Material and Methods: ACTH-secreting pituitary tumor samples were obtained during transphenoidal surgery from patients with Cushing disease and normal pituitary tissues from autopsies. The relative expression of miRNAs was measured by real-time PCR using RNU44 and RNU49 as endogenous controls. Relative quantification of miRNA expression was calculated using the 2(-Delta Delta Ct) method. Results: We found underexpression of miR-145 (2.0-fold; P = 0.04), miR-21 (2.4-fold; P = 0.004), miR-141 (2.6-fold; P = 0.02), let-7a (3.3-fold; P = 0.003), miR-150 (3.8-fold; P = 0.04), miR-15a (4.5-fold; P = 0.03), miR-16 (5.0-fold; P = 0.004), and miR-143 (6.4-fold; P = 0.004) in ACTH-secreting pituitary tumors when compared to normal pituitary tissues. There were no differences between miRNA expression and tumor size as well as miRNA expression and ratio of remission after surgery, except in patients presenting lower miR-141 expression who showed a better chance of remission. Conclusion: Our results support the possibility that altered miRNA expression profile might be involved in corticotrophic tumorigenesis. However, the lack of knowledge about miRNA target genes postpones full understanding of the biological functions of down-regulated or up-regulated miRNAs in corticotropinomas. (J Clin Endocrinol Metab 94: 320-323, 2009)
Resumo:
The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA(1,2). Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in E mu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc- overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap- dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site ( IRES)- dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic- specific expression of the endogenous IRES- dependent form of Cdk11 ( also known as Cdc21 and PITSLRE)(3-5), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in E mu-Myc/+ mice. When accurate translational control is re- established in E mu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post- genomic level.
Resumo:
Since the discovery of RNAi technology, several functional genomic and disease therapy studies have been conducted using this technique in the field of oncology and virology. RNAi-based antiviral therapies are being studied for the treatment of retroviruses such as HIV-1. These studies include the silencing of regulatory, infectivity and structural genes. The HTLV-1 structural genes are responsible for the synthesis of proteins involved in the entry, assembly and release of particles during viral infection. To examine the possibility of silencing HTLV-1 genes gag and env by RNA interference technology, these genes were cloned into reporter plasmids. These vectors expressed the target mRNAs fused to EGFP reporter genes. Three small interference RNAs (siRNAs) corresponding to gag and three corresponding to env were designed to analyze the effect of silencing by RNAi technology. The plasmids and siRNAs were co-transfected into HEK 293 cells. The results demonstrated that the expression of the HTLV-1 gag and env genes decreased significantly in vitro. Thus, siRNAs can be used to inhibit HTLV-1 structural genes in transformed cells, which could provide a tool for clarifying the roles of HTLV-1 structural genes, as well as a therapy for this infection. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
293T and Sk-Hep-1 cells were transduced with a replication-defective self-inactivating HIV-1 derived vector carrying FVIII cDNA. The genomic DNA was sequenced to reveal LTR/human genome junctions and integration sites. One hundred and thirty-two sequences matched human sequences, with an identity of at least 98%. The integration sites in 293T-FVIIIDB and in Sk-Hep-FVIIIDB cells were preferentially located in gene regions. The integrations in both cell lines were distant from the CpG islands and from the transcription start sites. A comparison between the two cell lines showed that the lentiviral-transduced DNA had the same preferred regions in the two different cell lines.
Resumo:
We report a case of acute monoblastic leukemia showing a jumping translocation with the MLL gene in a 17-year-old male. Classic cytogenetic and spectral karyotyping revealed a complex karyotype, and fluorescence in situ hybridization (FISH) demonstrated amplification of the MLL gene followed by translocation to chromosomes 15q, 17q, and 19q. In addition, molecular analyses showed a high expression of AURKA and AURKB genes. It is already known that overexpression of Aurora kinases is associated with chromosomal instability and poor prognosis. The formation of jumping translocations is a rare cytogenetic event and there is evidence pointing toward preferential involvement of the heterochromatin region of donor chromosomes and the telomere ends of recipient chromosomes. Jumping translocation with the MLL gene rearrangement is an uncommon phenomenon reported in leukemia cytogenetics. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Ligands for peroxisome proliferator-activated receptor gamma (PPAR-gamma), such as 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) have been implicated as a new class of anti-inflammatory compounds with possible clinical applications. Based on this concept, this investigation was designed to determine the effect of 15d-PGJ(2)-mediated activation of PPAR-gamma ligand on neutrophil migration after an inflammatory stimulus and clarify the underlying molecular mechanisms using a mouse model of peritonitis. Our results demonstrated that 15d-PGJ(2) administration decreases leukocyte rolling and adhesion to the inflammated mesenteric tissues by a mechanism dependent on NO. Specifically, pharmacological inhibitors of NO synthase remarkably abrogated the 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory site. Moreover, inducible NOS(-/-) mice were not susceptible to 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory sites when compared with their wild type. In addition, 15d-PGJ(2)-mediated suppression of neutrophil migration appeared to be independent of the production of cytokines and chemokines, since their production were not significantly affected in the carrageenan-injected peritoneal cavities. Finally, up-regulation of carrageenan-triggered ICAM-I expression in the mesenteric microcirculation vessels was abrogated by pretreatment of wild-type mice with 15d-PGJ(2), whereas 15d-PGJ(2) inhibited F-actin rearrangement process in neutrophils. Taken together these findings demonstrated that 15d-PGJ(2) suppresses inflammation-initiated neutrophil migration in a mechanism dependent on NO production in mesenteric tissues.